Монета 1 рубль 2014 года

Содержание:

Barrett M82A2

Литература

Задача особой государственной важности. Из истории создания ракетно-ядерного оружия и Ракетных войск стратегического назначения (1945-1959 гг.) / Сост

В. И. Ивкин, Г. А. Сухина. — М.: Российская политическая энциклопедия (РОССПЭН), 2010. — 1205 с. — 800 экз. — ISBN 978-5-8243-1430-4.

Карпенко А. В., Уткин А. Ф., Попов А. Д. Отечественные стратегические ракетные комплексы / Под научной ред. В. Ф. Уткина, Ю. С. Соломонова, Г. А. Ефремова. — СПб.: Невский бастион, 1999. — 288 с. — ISBN 5-85875-104-0.

Широкорад А. Б. Энциклопедия отечественного ракетного оружия 1918-2002 / Под общей ред. А. Е. Тараса. — Минск: Харвест, 2003. — 544 с. — (Библиотека военной истории). — 5100 экз. — ISBN 985-13-0949-4.

Пуски ракет Р-1 8А11 в 1949 году

Дата Ракетодромы Информация о ракете
1949/09/10 Капустин Яр СССР; Р-1 8А11, II-1
1949/09/11 Капустин Яр СССР; Р-1 8А11, II-2
1949/09/13 Капустин Яр СССР; Р-1 8А11, II-11
1949/09/14 Капустин Яр СССР; Р-1 8А11, II-4
1949/09/17 Капустин Яр СССР; Р-1 8А11, II-8
1949/09/19 Капустин Яр СССР; Р-1 8А11, II-5
1949/09/20 Капустин Яр СССР; Р-1 8А11, II-9
1949/09/23 Капустин Яр СССР; Р-1 8А11, II-15
1949/09/28 Капустин Яр СССР; Р-1 8А11, II-10
1949/10/03 Капустин Яр СССР; Р-1 8А11, II-14
1949/10/08 Капустин Яр СССР; Р-1 8А11, II-16
1949/10/10 Капустин Яр СССР; Р-1 8А11, II-12
1949/10/12 Капустин Яр СССР; Р-1 8А11, II-7
1949/10/13 Капустин Яр СССР; 2×Р-1 8А11: II-13, II-17
1949/10/14 Капустин Яр СССР; Р-1 8А11, II-18
1949/10/15 Капустин Яр СССР; Р-1 8А11, II-19
1949/10/18 Капустин Яр СССР; Р-1 8А11, II-23
1949/10/19 Капустин Яр СССР; Р-1 8А11, II-22
1949/10/22 Капустин Яр СССР; Р-1 8А11, II-20
1949/10/23 Капустин Яр СССР; Р-1 8А11, II-3

Модификации

Внутренняя структура Марса

Средняя плотность Марса составляет 3933 кг/м3, что говорит о том, что он является планетой земного типа и состоит из каменистых пород (их плотность — порядка 3000 кг/м3) с примесью железа. Однако точное соотношение Fe/Si не установлено; даются оценки от 1,2 до 1,78 (для хондритов характерно значение 1,71). Оно ниже, чем для Земли, из-за чего меньше и общая плотность.

Значение безразмерного момента инерции составляет 0,366, уточнённое — 0,3645, что отличается в меньшую сторону от величины 0,4, характеризующей однородный шар, то есть это свидетельствует о наличии более плотной области в центре — ядра. Однако это больше соответствующего значения для Земли — 0,3315 — то есть повышенная концентрация массы в области центра не столь сильна.

Внутреннее строение и состав Марса: структура слоёв, изменение параметров (температуры, давления, плотности) с глубиной.

Согласно современным моделям внутреннего строения Марса, он состоит из следующих слоёв:

Топография высот, гравитационное поле и толщина коры различных областей поверхности Марса.

Кора толщиной в среднем 50 км (максимальная оценка — не более 125 км) и составляющая по объёму до 4,4 % всего Марса. Для структуры коры характерна дихотомия между андезитовой северной и базальтовой южной частью, не полностью совпадающая, однако, с глобальной геологической дихотомией полушарий. Более тонкая кора — под ударными бассейнами и вдоль долин Маринера, а крупные вулканические области (Фарсида, Элизий) характеризуются более толстой корой за счёт продуктов вулканической активности. Некоторые теории не исключают, что кора состоит из непористых базальтовых пород и имеет толщину порядка 100 км и даже более, однако в совокупности геофизические и геохимические свидетельства всё же говорят скорее в пользу слоистой тонкой коры с небазальтовыми и/или пористыми материалами в составе. Средняя плотность коры — порядка 3100 кг/м3.

Намагниченность коры Марса.

На отдельных участках была зафиксирована остаточная намагниченность верхних слоёв, на порядок более сильная, чем магнитные аномалии на Земле. Наиболее ярко выраженные аномалии находятся в и в южных нойских областях по обе стороны от меридиана 180° западной долготы. Они представляют собой параллельные полосы чередующейся полярности, напоминающие полосовые магнитные аномалии на Земле, образующиеся при спрединге. Это говорит о том, что в древний период времени, которому соответствует эта поверхность, на Марсе, возможно, также имела место тектоника плит и , сформированное по механизму магнитогидродинамического динамо. Однако имеются и точечные источники поля, формирующие более сложное распределение. Интенсивность данного эффекта свидетельствует о вероятном наличии в коре магнетита, ильменита, гематита, пирротина и других богатых железом магнитных минералов. Формирование некоторых из них, в частности, предполагает реакции окисления, а более кислая, чем в мантии, среда означает присутствие на поверхности воды.

Мантия, в которой выделяют верхнюю, среднюю и (возможно) нижнюю часть. Из-за меньшей силы гравитации на Марсе диапазон давлений в мантии Марса гораздо меньше, чем на Земле, а значит, в ней меньше фазовых переходов. Верхняя мантия состоит из оливина, пироксенов (ортопироксена, а ниже клинопироксена) и граната при давлении до 9 ГПа. Фазовый переход оливина в шпинелевую модификацию (сперва γ-, а затем, при 13,5 ГПа — β-фазу) начинается при давлениях свыше 9 ГПа на довольно больших глубинах — около 1000 км, тогда как для Земли это 400 км, также из-за разницы интенсивности гравитации. После 13,5 ГПа γ-шпинель сосуществует с β-фазой, клинопироксеном и меджоритом При давлениях выше 17 ГПа начинают преобладать γ-шпинель и меджорит. Существование нижней мантии, как и диапазон давлений, необходимых для стабильности перовскита и ферропериклаза, составляющих вместе с меджоритом нижнюю мантию, точно не установлены и зависят от состояния мантии и положения границы с ядром. Последний параметр, как и толщина коры, определяет плотность мантии; она должна быть в среднем ниже, чем для Земли, исходя из величины момента инерции, и оценивается в 3450-3550 кг/м³. Характер рельефа и другие признаки позволяют предположить наличие астеносферы, состоящей из зон частично расплавленного вещества.

Ядро радиусом порядка половины радиуса всего Марса — по разным оценкам, от 1480 до 1840 км. Плотность в центре планеты достигает 6700 кг/м³. Ядро, скорее всего, находится в жидком состоянии (по крайней мере частично) и состоит в основном из железа с примесью 16 % (по другим оценкам — до 20 % и выше) (по массе) серы, а также порядка 7,6 % никеля, причём содержание лёгких элементов вдвое выше, чем в ядре Земли. Чем больше серы, тем больше вероятность того, что ядро полностью жидкое. Содержание водорода, точно не известное, определяет отношение Fe/Si: чем оно выше, тем больше это соотношение, а также железистое число мантии Fe# — из-за роста радиуса ядра.

Характеристики

Размножение кислицы

Выращивание из семян

В естественных условиях кислицы размножаются семенами. К семенному способу размножения кислицы в домашних условиях прибегают редко, поскольку есть более надежные способы размножения – вегетативные

Но если для вас важно осуществить выращивание кислицы именно из семян, то желаем успеха и предлагаем перечень условий и мероприятий для успешного генеративного размножения кислицы:

  • состав смеси для посева: по четыре части листового перегноя и торфа и одна часть песка;
  • семена кислицы ранней весной разбрасывают по поверхности грунта, не заделывая, после посева емкость накрывают стеклом, поскольку для прорастания нужна стопроцентная влажность;
  • для прорастания семян нужен также рассеянный свет, температура 16-18 ºC и постоянно влажная почва – полив посевов осуществляется из пульверизатора;
  • необходимо ежедневное проветривание посевов.

При соблюдении всех этих условий всходы в зависимости от свежести семян появятся через неделю-месяц после посева.

Вегетативные способы размножение

Проще всего при ежегодной весенней пересадке кислицы отделить дочерние луковички или клубеньки, образовавшиеся вокруг стержневого корня, и высадить их по несколько штук в один горшок, присыпав небольшим количеством грунта, поместив емкость в прохладное затененное место и изредка увлажняя почву. При появлении всходов горшок перемещают поближе к свету, и через месяц-полтора молодое растение превратится в пышно цветущий кустик.

После периода покоя, как только появится первый новый лист, клубень извлекают из земли, очищают от почвы, промывают в слабом растворе марганцовки, разрезают на части, обрабатывают срезы толченым древесным углем и рассаживают деленки по отдельным горшкам. Горшки с рассаженными частями клубня помещают под рассеянный свет, поливают после просыхания земляного кома и подкармливают два раза в месяц, начиная со второй недели после посадки.

История создания

У истоков создания первой советской баллистической ракеты Р-1 лежит германский аналог V-2, который активно применялся в 1944-45 гг. для обстрелов территории Великобритании. Спустя несколько месяцев после прекращения боевых действий начались поиски сотрудников предприятий, которые выпускали V-2, а также готовых образцов.

В это же время было произведено уточнение зон оккупации Германии, в результате чего к СССР отошел район Тюрингии, где ранее располагались предприятия по выпуску V-2. Но американские войска сумели вывезти все оборудование и техническую документацию, а также всех ведущих специалистов.

Именно так и попал в США Вернер фон Браун, который впоследствии стал «отцом» американской космической программы. Советские специалисты, осмотрев предприятия, обнаружили только фрагменты ракет, к которым не имелось никакой технической или чертежной документации.

Весной 1946 года команда «Выстрел» переформировывается в 2 института, перед которыми стояла задача создания советской копии V-2.

Для ускорения хода работ широко привлекались немецкие специалисты, которых вывезли из Германии. Основная часть конструкторских работ велась в НИИ-88, который размещался в подмосковном Калининграде (ныне – Королев). Уже в середине осени 1946 года на полигоне Капустин Яр стали выполняться испытательные запуски собранных и восстановленных V-2.

Поскольку советские конструкторы осознавали бесперспективность копирования немецкой ракеты устаревающей конструкции, то они заранее начали прорабатывать перспективные проекты оружия с отделяемой боевой частью. Для отработки механизмов разделения и тестирования новых узлов была создана модификация ракеты Р-1А, которая была готова к полетам в конце весны 1949 года.

В конструкции Р-1А появился несущий бак для топлива, при этом кислородный резервуар оставался выполненным в виде отдельного модуля.

Протестированные решения позднее применили в ракете Р-2, а построенные экземпляры Р-1А применялись для исследования верхних слоев атмосферы. Всего было произведено 6 пусков по баллистической и вертикальной траекториям.

Дополнительно проводились исследования механизма распространения свехдлинных волн в разреженной атмосфере. В 1955-56 гг. на испытания поступила последняя версия Р-1Е, на которой проверялась возможность разгона отделяемой части пороховыми ускорителями. Версия Р-1М, представляла собой глубокую модернизацию ракеты Р-1, в 1955 году была выполнена серия тестовых пусков. Но развития проект не получил из-за появления более перспективных моделей ракетного вооружения.

История создания

Создана на базе построенной под руководством С. П. Королева советской баллистической ракеты дальнего действия на жидком топливе Р-1, которая 10 октября года успешно стартовала, пролетела 288 км и попала в заданный район. Прототипом Р-1 была трофейная немецкая ракета А-4 (ФАУ-2), созданная во время второй мировой войны Вернером фон Брауном.

Ракета Р-1Е предназначена для проведения комплекса научных исследований и экспериментальных работ на высотах порядка 100 км:

  1. исследование физических и химических характеристик воздуха, спектрального состава излучения Солнца, изменения аэродинамических характеристик при больших скоростях и высотах; разработка метода определения направления и скорости ветра в верхних слоях атмосферы;
  2. определение физических процессов в ионосфере и плотности ионизации на высотах ~100 км;
  3. проверка поглощающей способности озона на высоте 55-60 км;
  4. исследование жизнедеятельности животных при подъеме на ракете на большие высоты, а также испытания систем их спасения, систем спасения агрегатов с аппаратурой и корпуса ракеты.

Кроме того, на ракете устанавливаются аппаратура и датчики телеизмерений по специально разработанной программе.

При пусках ракеты Р1-Е была сделана еще одна попытка найти конструктивное решение, обеспечивающее спасение корпуса ракеты. Для этой цели на головной части установили три пороховых ускорителя, сообщавшие ей скорость отделения около 12 м/с. Однако этого оказалось недостаточно.

Новый конструктивный вариант системы спасения корпуса ракеты заключался в использовании пиропушки, которая должна была не только вводить в действие вытяжные купола парашютов, но и одновременно освобождать парашютные пакеты, в которые были уложены основные купола парашютов.

Все поставленные задачи, обеспечивающие проведение научных экспериментов, были решены, за исключением одной — спасения корпуса ракеты.

См. также

Примечания

  1. Борис Малашевич. .
  2. . Дата обращения: 28 июня 2020.

История создания

Литература

Задача особой государственной важности. Из истории создания ракетно-ядерного оружия и Ракетных войск стратегического назначения (1945-1959 гг.) / Сост

В. И. Ивкин, Г. А. Сухина. — М.: Российская политическая энциклопедия (РОССПЭН), 2010. — 1205 с. — 800 экз. — ISBN 978-5-8243-1430-4.

Карпенко А. В., Уткин А. Ф., Попов А. Д. Отечественные стратегические ракетные комплексы / Под научной ред. В. Ф. Уткина, Ю. С. Соломонова, Г. А. Ефремова. — СПб.: Невский бастион, 1999. — 288 с. — ISBN 5-85875-104-0.

Широкорад А. Б. Энциклопедия отечественного ракетного оружия 1918-2002 / Под общей ред. А. Е. Тараса. — Минск: Харвест, 2003. — 544 с. — (Библиотека военной истории). — 5100 экз. — ISBN 985-13-0949-4.

Пуски

Пуски проводились с полигона Капустин Яр.

Первые две установки с приборами ФИАР-1 были запущены 24 мая 1949 г в 4 часа 40 минут на пятой ракете Р-1А. Из-за неисправности парашютной системы контейнеры при приземлении разрушились.

После доработки парашютной системы 28 мая 1949 г. в 4 часа 50 минут был проведён второй подобный эксперимент на шестой ракете Р-1А. Были получены положительные результаты.

Пуски ракеты Р-1А, при которых была достигнута высота 102 км, показали большую перспективность ракетных геофизических исследований и позволили наметить их расширенную программу. При Президиуме Академии наук был учрежден координационный межведомственный комитет под председательством академика А. А. Благонравова. Входя в состав этого комитета, С. П

Королев уделял первостепенное внимание всем вопросам, связанным не только с созданием геофизических ракет, но и с методикой исследований, разработкой научной аппаратуры

Примечания

  1. ↑ Конституция Украины от 28 июня 1996 года — Статья 20 // Викитека.
  2. Шіппіх Б. Згинуть наші воріженьки… — Київ: Вид-во «Вернигора», 1917. (укр.)
  3. Гречило А. Українська територіальна геральдика. — Львів, 2010. — С. 107.
  4. Административный кодекс УССР. Текст и частный комментарий. − Под редакцией С. Канарского и Ю. Мазуренко. — Харьков, 1929. — С. 310—315.
  5. Постановление Президиума Верховного Совета СССР «О государственных флагах союзных республик» от 20.01.1947.
  6. Karel C. Berkhoff Harvest of Despair. Life and Death in Ukraine under Nazi Rule — Cambridge, Massachusetts, 2004. — P. 51.
  7. Курило Т. Сила та слабкість українського націоналізму в Києві під час німецької окупації (1941—1943) // Україна модерна. — 2008. — № 13. — С. 116.
  8. Svirko, W. State Flag of Ukraine. DSTU 4512:2006. — Kiev : State Standards of Ukraine, September 2006. — P. 7.

Сравнительная характеристика

Общие сведения и основные тактико-технические характеристики советских баллистических ракет первого поколения
Наименование ракеты Р-1 Р-2 Р-5М Р-11М Р-7А Р-9А Р-12 и Р-12У Р-14 и Р-14У Р-16У
Конструкторское бюро ОКБ-1 КБ «Южное»
Генеральный конструктор С. П. Королёв С. П. Королёв, М. К. Янгель С. П. Королёв М. К. Янгель
Организация-разработчик ЯБП и главный конструктор КБ-11, Ю. Б. Харитон КБ-11, С. Г. Кочарянц
Организация-разработчик заряда и главный конструктор КБ-11, Ю. Б. Харитон КБ-11, Е. А. Негин
Начало разработки 10.03.1947 14.04.1948 10.04.1954 13.02.1953 02.07.1958 13.05.1959 13.08.1955 02.07.1958 30.05.1960
Начало испытаний 10.10.1948 25.09.1949 20.01.1955 30.12.1955 24.12.1959 09.04.1961 22.06.1957 06.06.1960 10.10.1961
Дата принятия на вооружение 28.11.1950 27.11.1951 21.06.1956 1.04.1958 12.09.1960 21.07.1965 04.03.1959–09.01.1964 24.04.1961–09.01.1964 15.07.1963
Год постановки на боевое дежурство первого комплекса не ставились 10.05.1956 переданы в СВ в 1958 01.01.1960 14.12.1964 15.05.1960 01.01.1962 05.02.1963
Максимальное количество ракет, стоявших на вооружении 36 6 29 572 101 202
Год снятия с боевого дежурства последнего комплекса 1966 1968 1976 1989 1983 1977
Максимальная дальность, км 270 600 1200 170 9500 12500 2080 4500 11000–13000
Стартовая масса, т 13,4 20,4 29,1 5,4 276 80,4 47,1 86,3 146,6
Масса полезной нагрузки, кг 1000 1500 1350 600 3700 1650–2095 1630 2100 1475–2175
Длина ракеты, м 14,6 17,7 20,75 10,5 31,4 24,3 22,1 24,4 34,3
Максимальный диаметр, м 1,65 1,65 1,65 0,88 11,2 2,68 1,65 2,4 3,0
Тип головной части неядерная, неотделяемая моноблочная, неядерная, отделяемая моноблочная, ядерная
Количество и мощность боевых блоков, Мт 1×0,3 1×5 1×5 1×2,3 1×2,3 1×5
Стоимость серийного выстрела, тыс. руб. 3040 5140
Источник информации : Оружие ракетно-ядерного удара. / Под ред. Ю. А. Яшина. — М.: Издательство МГТУ имени Н. Э. Баумана, 2009. — С. 23–24 — 492 с. — Тираж 1 тыс. экз. — ISBN 978-5-7038-3250-9.

Силовая часть воздушного судна

В качестве привода на вертолете используются два турбовальных двигателя ТВ 3, суммарная взлетная мощность которых составляет 2х2200 лошадиных сил, и редуктор ВР-252. Несущие винты имеют стабилизированную частоту вращения во время полета.

Главными источниками электрической электроэнергии являются два трехфазных генератора переменного тока с частотой 400 Гц, которые приводятся в действие редуктором ВР-252. Генераторы работают в параллельном режиме, но непосредственно к сети подключён лишь левый, а правый находится в резерве. Постоянный ток на вертолете получается путем преобразования из переменного с помощью двух полупроводниковых выпрямителей ВУ-Б.

Аварийное питание обеспечивают две батареи никель-кадмиевого типа, а также два преобразователя тока.

Во время аварийной посадки на водную поверхность активируются надувные баллонеты, которые в процессе нормального полета уложены в свернутом положении в боковые контейнеры вертолета, расположенные на фюзеляже

Важно отметить, что баллонеты не гарантируют требуемой плавучести машине при отключённых двигателях

Также российский вертолет Ка-27 снабжен системой автопилота и полуавтоматической системой передачи координат и прочей информации об обнаруженной подводной лодке.

В состав экипажа входят три человека: пилот, штурман-координатор и оператор противолодочной системы.

Познавательное видео о глобальном потеплении

График изменений курса 1 Российского рубля к Казахстанскому тенге

Оружейное оснащение

САУ «Мста-С»

Примечания

  1. , с. 9.
  2. советская разведка смогла добыть лишь фрагментированные части разрушенных Фау-2, ни одна рабочая или хотя бы частично рабочая Фау в руки советских инженеров не попала
  3. хотя, согласно характеристикам Фау-2, максимальная дальность полёта составляла 320 км
  4. Черток Б. Е. Ракеты и люди. — 2-е изд. — М.: Машиностроение, 1999. — С. 329. — 416 с. — 1300 экз. — ISBN 5-217-02934-X.
  5. , Из отчета 2-го дивизиона 72-й инженерной бригады РВГК о проведенных спецработах в условиях низких температур (январь-февраль 1954 г.), с. 341-347.
  6. , Докладная записка М. И. Неделина М. С. Малинину о сформировании 233-й инженерной бригады РВГК от 14.12.1954 №1181711сс, с. 375-376.

Потери

Литература

Задача особой государственной важности. Из истории создания ракетно-ядерного оружия и Ракетных войск стратегического назначения (1945-1959 гг.) / Сост. В

И. Ивкин, Г. А. Сухина. — М.: Российская политическая энциклопедия (РОССПЭН), 2010. — 1205 с. — 800 экз. — ISBN 978-5-8243-1430-4

В. И. Ивкин, Г. А. Сухина. — М.: Российская политическая энциклопедия (РОССПЭН), 2010. — 1205 с. — 800 экз. — ISBN 978-5-8243-1430-4.

Карпенко А. В., Уткин А. Ф., Попов А. Д. Отечественные стратегические ракетные комплексы / Под научной ред. В. Ф. Уткина, Ю. С. Соломонова, Г. А. Ефремова. — СПб.: Невский бастион, 1999. — 288 с. — ISBN 5-85875-104-0.

Мозжорин Ю., Еременко А. От первых баллистических до… (рус.) // Авиация и космонавтика. — М.: Воениздат, 1991. — № 7. — С. 40-41. — ISSN [http://www.sigla.ru/table.jsp?f=8&t=3&v0=0373-9821&f=1003&t=1&v1=&f=4&t=2&v2=&f=21&t=3&v3=&f=1016&t=3&v4=&f=1016&t=3&v5=&bf=4&b=&d=0&ys=&ye=&lng=&ft=&mt=&dt=&vol=&pt=&iss=&ps=&pe=&tr=&tro=&cc=UNION&i=1&v=tagged&s=0&ss=0&st=0&i18n=ru&rlf=&psz=20&bs=20&ce=hJfuypee8JzzufeGmImYYIpZKRJeeOeeWGJIZRrRRrdmtdeee88NJJJJpeeefTJ3peKJJ3UWWPtzzzzzzzzzzzzzzzzzbzzvzzpy5zzjzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzztzzzzzzzbzzzzzzzzzzzzzzzzzzzzzzzzzzzvzzzzzzyeyTjkDnyHzTuueKZePz9decyzzLzzzL*.c8.NzrGJJvufeeeeeJheeyzjeeeeJh*peeeeKJJJJJJJJJJmjHvOJJJJJJJJJfeeeieeeeSJJJJJSJJJ3TeIJJJJ3..E.UEAcyhxD.eeeeeuzzzLJJJJ5.e8JJJheeeeeeeeeeeeyeeK3JJJJJJJJ*s7defeeeeeeeeeeeeeeeeeeeeeeeeeSJJJJJJJJZIJJzzz1..6LJJJJJJtJJZ4….EK*&debug=false 0373-9821].

Широкорад А. Б. Энциклопедия отечественного ракетного оружия 1918-2002 / Под общей ред. А. Е. Тараса. — Минск: Харвест, 2003. — 544 с. — (Библиотека военной истории). — 5100 экз. — ISBN 985-13-0949-4.

Рожков В. Путь к «Востоку». Баллистическая ракета Р-1 (рус.) // Моделист-Конструктор. — 2012. — № 6. — С. 16-18. — ISSN [http://www.sigla.ru/table.jsp?f=8&t=3&v0=0131-2243&f=1003&t=1&v1=&f=4&t=2&v2=&f=21&t=3&v3=&f=1016&t=3&v4=&f=1016&t=3&v5=&bf=4&b=&d=0&ys=&ye=&lng=&ft=&mt=&dt=&vol=&pt=&iss=&ps=&pe=&tr=&tro=&cc=UNION&i=1&v=tagged&s=0&ss=0&st=0&i18n=ru&rlf=&psz=20&bs=20&ce=hJfuypee8JzzufeGmImYYIpZKRJeeOeeWGJIZRrRRrdmtdeee88NJJJJpeeefTJ3peKJJ3UWWPtzzzzzzzzzzzzzzzzzbzzvzzpy5zzjzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzztzzzzzzzbzzzzzzzzzzzzzzzzzzzzzzzzzzzvzzzzzzyeyTjkDnyHzTuueKZePz9decyzzLzzzL*.c8.NzrGJJvufeeeeeJheeyzjeeeeJh*peeeeKJJJJJJJJJJmjHvOJJJJJJJJJfeeeieeeeSJJJJJSJJJ3TeIJJJJ3..E.UEAcyhxD.eeeeeuzzzLJJJJ5.e8JJJheeeeeeeeeeeeyeeK3JJJJJJJJ*s7defeeeeeeeeeeeeeeeeeeeeeeeeeSJJJJJJJJZIJJzzz1..6LJJJJJJtJJZ4….EK*&debug=false 0131-2243].

Пуски

Всего с полигона Капустин Яр провели шесть пусков с 25 января по 7 июня года, четыре из которых были удачными.

  • 25.01.1955 Отрыв головной части на 22-й секунде. Спасли животных в левой тележке.
  • 05.02.1955 Аварийный пуск.
  • 04.11.1955 Спасли головную часть, приборные контейнеры и животных в двух тележках. Отработал дымовой контейнер.
  • 14.05.1956 Спасли головную часть и животных в двух тележках. Отработал дымовой контейнер. По приборным контейнерам информации нет.
  • 31.05.1956 Спасли головную часть, приборные контейнеры и животных в двух тележках. Дымовой контейнер не устанавливался.
  • 07.06.1956 Спасли головную часть, приборные контейнеры и животных в двух тележках. Отработал дымовой контейнер.

Военно-политические союзы и формирование мировой социалистической системы

После окончания войны в некоторых странах Европы к власти пришли сторонники социализма. В Польше, Албании, Югославии, Венгрии, Болгарии, Чехословакии, Румынии, а также в ГДР начались преобразования по советскому образцу. Для координации деятельности, проводимой в коммунистических партиях этих стран, создается Коммунистическое Информационное бюро (Коминформбюро).

Помимо европейских стран, придерживавшихся социализма, СССР поддерживал отношения с Корейской Народно-демократической Республикой и Китайской Народной Республикой.

Страны, не принявшие финансовую помощь от США, под руководством СССР создали альтернативу. 5 января 1949 года образовался Совет экономической взаимопомощи (СЭВ). В восточноевропейских государствах начиналось перестраивание экономик. Началось создание такой же хозяйственной модели, как в Советском союзе.

Однако навязывание нравилось не всем восточноевропейским государствам. Деятельность лидера Югославии Броза Тито по мнению правительства Советского союза отличалась излишней самостоятельностью. Это привело к разрыву дипломатических отношений с Югославией в 1949 году.

Ракета Р-1

Основные характеристики

Максимальная дальность стрельбы, км

Начальная масса ракеты, кг

Масса головной части, кг

Масса компонентов ракетного топлива
(жидкий кислород, этиловый спирт,
перекись водорода, газ), кг

Тяга ДУ на земле, кгс

270

13430

1075

9400

27200

14 апреля 1948 года было принято Постановление правительства о создании первой ракеты из отечественных материалов на
базе немецкой ракеты А-4 (ФАУ-2). Эту ракету, совместно с комплексом ее наземного оборудования, назвали Р-1.
Недостатки ракеты А-4, выявленные в процессе ее летных испытаний, а также почти полное отсутствие теоретических материалов
с обоснованием принятых технических решений потребовали при создании ракеты Р-1 такого объема работ, который обычно
необходим при разработке новой конструкции. Особенно трудоемкими оказались материаловедческие задачи.

Материаловедам нельзя было ограничиваться формальным подбором отечественных материалов, от них требовался критический анализ
принятых немцами технических решений. Необходимо было отобрать 86 марок стали, 56 марок цветных металлов, 159 неметаллических
материалов и т.п. Требовалось также позаботиться о повышении надежности ракеты.
Несмотря на формальную возможность ограничиться копированием ракеты А-4 для первой серии ракеты Р-1, конструкторы стремились
сразу же внедрить новые технические решения, насколько это позволяли сделать весьма сжатые сроки: были существенно переработаны
конструкция хвостового и приборного отсеков с целью их усиления, повышена расчетная дальность полета ракеты с 250 до 270 км.
При разработке двигателя ракеты Р-1 первой серии использовались двигатели ракеты А-4 без каких-либо конструктивных изменений,
за исключением замены большей части материалов на отечественные.
Для первой серии ракеты Р-1 была использована без изменений и электрическая схема системы управления ракеты А-4, однако
конструкция и технические характеристики многих приборов претерпели изменения.
Одновременно с ракетой создавался комплекс наземного оборудования для пусков ракеты с предварительно подготовленной в инженерном
отношении площадки (бетонирование, закладка фундаментной плиты под пусковой стол, создание укрытий для передвижных дизельных
электростанций и других агрегатов, а также выполнение работ по прокладке наземной кабельной сети).
Технологический процесс работы агрегатов при подготовке ракеты Р-1 к пуску, а также конструкция агрегатов мало чем отличались
от ракеты А-4. Главным конструктором наземного комплекса ракеты Р-1 был В.П. Бармин. Созданное впоследствии под его руководством
ГСКБ «Спецмаш» стало головной организацией в стране по наземным комплексам.
Первый пуск ракеты Р-1 состоялся 17 сентября 1948 года под руководством Государственной комиссии, председателем которой
был С.И. Ветошкин, техническим руководителем С.П. Королев.
На первом этапе летно-конструкторских испытаний (ЛКИ) было испытано 9 ракет Р-1, из которых только одна достигла цели
(10 октября 1948 года). Причины аварий были, в основном, из-за низкого качества изготовления агрегатов и систем ракеты, недостаточного
объема проверок узлов и приборов, неотработанности некоторых систем.
Для второй серии ракет в целях повышения их надежности пришлось внести много изменений в бортовые приборы системы управления.
Было подготовлено 20 ракет (10 пристрелочных и 10 зачетных), из которых 17 выполнили свою задачу. Потребовались дополнительные
экспериментальные работы, чтобы обеспечить безаварийные пуски ракеты Р-1.25 ноября 1950 года ракету Р-1 с комплексом наземного оборудования приняли на вооружение.

Противостояние двух систем после Второй мировой войны: капитализм и социализм

История[ | ]

Пуски ракет Р-1 8А11 в 1948 году

Модификации

В игровой и сувенирной индустрии

Модификации Ка-27

  • Ка-252 – первый прототип палубного противолодочного Ка-27.
  • Ка-252ТЛ – телеметрический вертолет корабельного расположения.
  • Ка-27ПЛ – противолодочный палубный вариант.
  • Ка-27ПС – поисково-спасательный вариантвертолета.
  • Ка-27ПСД – поисково-спасательный планер повышенной дальности полета.
  • Ка-27РЭП – тестовый вертолет для проведения радиоэлектронного подавления.
  • Ка-27Е – вертолет, выполняющий радиационную разведку.
  • Ка-27М – модернизированная модификация Ка-27, в состав которой входит радиолокационная командно-тактическая система. В ней выделяют магнитометрическую, акустическую, радиоразведочную системы, бортовую радиолокационную станцию. Радар находится под фюзеляжем и применяется для определения надводных, наземных и воздушных объектов. В 2014 году 4 машины Ка-27ПЛ по заказу ВМФ России начали переделывать под Ка-27М. Серийное производство тоже планировалось запустить с 2014 года.
  • Ка-28 – экспортная модификация Ка-27, которая отличается упрощенным набором оборудования. Нынче на экспорт не поставляется, а направляется на потребности ВВС РФ.
  • Ка-29 – транспортно-боевой вариант. Производство в нынешнее время не налажено.

Ка-32 – вертолет гражданской авиации, который эксплуатируется не только российскими авиакомпаниями, но и Канадой, Малайзией, Южной Кореей и Швейцарией.

СССР

Р-330П в венгерском музее

Р-330 «Мандат»

Р-330 «Мандат» — советский комплекс РЭП. Состоял из пункта управления Р-330К и автоматизированных станций РЭБ. К станциям РЭБ относились Р-330Б «Мандат-Б», Р-330У «Укол», Р-330П «Пирамида», а также станции Р-325У, Р-378А(Б). В разработке комплекса принимали участие Тамбовский научно-исследовательский институт радиотехники «ЭФИР» (АО ТНИИР «ЭФИР»), ныне входящий в концерн «Созвездие», и Научно-исследовательский институт комплексной автоматизации (НИИКА, Донецк).

Предназначен для радиоразведки и радиоподавления линий радиосвязи противника в тактическом и оперативно-тактическом звеньях управления в диапазоне от 1,5 до 100 МГц. Управление станциями помех может осуществляться в автоматизированном и ручном режимах. Кроме того станции РЭБ могут работать автономно, без пункта управления.

Р-330 «Мандат» и отдельные станции состоят на вооружении подразделений и частей РЭБ Сухопутных войск ВС России, Украины и Белоруссии.

Электропитание ПУ может осуществляться как от перевозимой электростанции, так и от внешней сети напряжением 380 В частотой 50 Гц. Кроме того, предусмотрено аварийное электропитание — две последовательно соединенные аккумуляторные батареи 6СТ-60 в машине управления, а также резервное — две последовательно соединенные АКБ 6СТ-190 в каждой машине для системы жизнеобеспечения кузова.

Аппаратура комплекса размещена в кузовах-фургонах и может работать в интервале температур окружающего воздуха от −10 градусов до + 50 градусов.

Быстродействие вычислительного комплекса — 750000 операций в секунду. Ёмкость памяти вычислительного комплекса: резидентной (внутренней) — 28 килобайт; внешней — 208 килобайт.

  • Дальность дистанционного управления станциями помех при работе радиорелейных станций Р-415В: на штыревую антенну: до 12 км;
  • при работе на направленную антенну: до 30 км.

Габариты:

  • машины управления и аппаратной машины связи — 8000х2700х3600 мм;

Вес:

  • машины управления — 10700 кг;

аппаратной машины связи — 8750 кг;
электростанции — 1750 кг.
Экипаж ПУ — 7 человек.
Время развертывания: 40 — 60 мин.
Время свертывания: 35 — 55 мин.

Р-330Б «Мандат-Б»

Станция смонтирована на шасси МТ-ЛБ. Разработчик ТНИИР «Эфир». Диапазон рабочих частот 30..100 МГц. Мощность передатчика — 1 кВт.

Р-330У «Укол»

Внешние изображения
Р-330 «Мандат»

Принята на вооружение в 1985 году. В состав ПУ комплекса «Укол» входят:

  • машина управления на шасси автомобиля (Урал-375);
  • прицепная электростанция ЭСБ-12 мощностью 12 кВт, на базе двигателя ГАЗ-24

Предназначена для радиоразведки в диапазоне 30 — 100 МГц, и подавления 30 — 60 МГц. Мощность передатчика 1 кВт. Антенны комплекса устанавливаются на телескопическую мачту высотой 12 м (вес устройства 90 кг). Комплекс антенн состоит из антенны пеленгации радиосредств (решётка Эдкокка-Комолова) и логопериодической гибкой антенны, предназначенной для излучения. Имеет в составе радиорелейную станцию связи (высота мачты достигает 18 метров), станцию связи Р-107М.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector