Кумулятивное оружие: история, принцип работы

Оценка снаряда

Кумулятивно-осколочный снаряд представляет собой модификацию кумулятивного снаряда, в котором более эффективно утилизируется оставшаяся после образования кумулятивной струи энергия. При этом кумулятивное действие многофункционального и специализированного снарядов сравнимы. Однако осколочно-фугасное действие многофункционального снаряда несравнимо меньше, чем у осколочно-фугасного — образуется меньшее количество меньших по скорости и массе осколков. По этой причине в советской школе танкостроения предпочтение было отдано раздельному использованию специализированных кумулятивных и осколочно-фугасных снарядов.

Достоинства

Основным достоинством кумулятивно-осколочного боеприпаса является его универсальность — он пригоден для поражения всех типов целей, характерных для ствольной артиллерии. Кумулятивное действие позволяет эффективно бороться с высокозащищёнными целями (такими как ОБТ), а осколочно-фугасное действие — поражать живую силу противника. При попадании по бронетехнике с пехотой на ней значительные повреждения получат как техника, так и пехота.

Недостатки

Среди основных недостатков кумулятивно-осколочных боеприпасов обычно называют их дороговизну, слабое осколочно-фугасное действие, а также малую эффективность относительно укреплений.

Слабое осколочно-фугасное действие ограничивает возможности снаряда по поражению живой силы противника в укреплениях, внутри бронетехники.
Кумулятивно-осколочный снаряд имеет относительно слабый корпус, который не пригоден для заглубления снаряда в преграду — по этой причине КОС малоэффективны против укреплений противника.

Использование относительно дорогих кумулятивно-осколочных боеприпасов в качестве куда более дешёвых осколочно-фугасных приводит к значительному увеличению стоимости ведения учебных стрельб и боевых действий.

DámskýDeník

Преимущества и недостатки кумулятивных боеприпасов

Подобные боеприпасы имеют как сильные стороны, так и недостатки. К их несомненным достоинствам можно отнести следующее:

высокая бронебойность;
бронепробиваемость не зависит от скорости боеприпаса;
мощное заброневое действие.

У калиберных и подкалиберных снарядов бронепробиваемость напрямую связана с их скоростью, чем она выше, тем лучше. Именно поэтому для их применения используются артиллерийские системы. Для кумулятивных боеприпасов скорость не играет роли: кумулятивная струя образуется при любой скорости столкновения с мишенью. Поэтому кумулятивная боевая часть – идеальное средство для гранатометов, безоткатных орудий и противотанковых ракет, бомб и мин. Более того, слишком высокая скорость снаряда не дает образоваться кумулятивной струе.

Попадание кумулятивного снаряда или гранаты в танк часто приводит к взрыву боекомплекта машины и полностью выводит ее из строя. Экипаж при этом практически не имеет шансов на спасение.

Кумулятивные боеприпасы имеют весьма высокую бронебойность. Некоторые современные ПТРК пробивают гомогенную броню с толщиной более 1000 мм.

Недостатки кумулятивных боеприпасов:

довольно высокая сложность изготовления;
сложность применения для артиллерийских систем;
уязвимость перед динамической защитой.

Снаряды нарезных орудий стабилизируются в полёте за счет вращения. Однако центробежная сила, которая возникает при этом, разрушает кумулятивную струю. Придуманы разные «хитрости», для того чтобы обойти эту проблему. Например, в некоторых французских боеприпасах вращается только корпус снаряда, а его кумулятивная часть устанавливается на подшипниках и остается неподвижной. Но практически все решения этой проблемы значительно усложняют боеприпас.

Боеприпасы для гладкоствольных орудий, наоборот, имеют слишком высокую скорость, которая недостаточна для фокусирования кумулятивной струи.

Именно поэтому боеприпасы с кумулятивные боевые части более характерны для низкоскоростных или неподвижных боеприпасов (противотанковые мины).

Против подобных боеприпасов существует довольно простая защита – кумулятивная струя рассеивается с помощью небольшого контрвзрыва, который происходит на поверхности машины. Это так называемая динамическая защита, сегодня этот способ применяется очень широко.

Чтобы пробить динамическую защиту используется тандемная кумулятивная боевая часть, которая состоит из двух зарядов: первый устраняет динамическую защиту, а второй – пробивает основную броню.

Сегодня существуют кумулятивные боеприпасы с двумя и тремя зарядами.

Бронебойный подкалиберный снаряд и его описание

Как мы уже отметили выше, подобные боеприпасы идеально подходят для стрельбы по танкам. Интересно то, что подкалибер не имеет привычного нам взрывателя и взрывчатого вещества. Принцип действия снаряда полностью основан на его кинетической энергии. Если сравнить, то это что-то похожее на массивную высокоскоростную пулю.

Состоит подкалибер из катушечного корпуса. В него вставляется сердечник, который зачастую выполняют в 3 раза меньшего размера, нежели калибр орудия. В качестве материала для сердечника используются металлокерамические сплавы высокой прочности. Если раньше это был вольфрам, то сегодня более популярен обедненный уран по целому ряду причин. Во время выстрела всю нагрузку воспринимает на себя поддон, тем самым обеспечивая начальную скорость полета. Так как вес такого снаряда меньше, нежели обычного бронебойного, за счет уменьшения калибра удалось добиться увеличения скорости полета. Речь идет о существенных значениях. Так, оперенный подкалиберный снаряд летит со скоростью 1 600 м/с, в то время как классический бронепробивающий – 800-1 000 м/с.

Полезное видео

Цены ГАЗ-33081 на российском рынке

Стоимость нового полноприводного грузовика ГАЗ-33081 у дилеров Горьковского автозавода начинается с полутора миллионов рублей (за базовую комплектацию – бортовой автомобиль с тентом). На вторичном рынке предложений немного, и цена колеблется от 400 тысяч рублей до 1 миллиона, в зависимости от технического состояния автомашины.

Вахтовый автобус ГАЗ-33081.

В целом, нужно отметить, что ГАЗ-33081 был просто обречён на успех в нашей стране, где тысячи квадратных километров занимают просторы бездорожья и есть насущная необходимость в применении реальных вездеходных качеств техники.

Дизельный полноприводной «Садко» стал хорошим преемником грузовика ГАЗ-66, унаследовав лучшие качества простоты, неприхотливости, проходимости данной машины и избавившись от присущих ей недостатков.

Преимущества и недостатки кумулятивных боеприпасов

Подобные боеприпасы имеют как сильные стороны, так и недостатки. К их несомненным достоинствам можно отнести следующее:

  • высокая бронебойность;
  • бронепробиваемость не зависит от скорости боеприпаса;
  • мощное заброневое действие.

У калиберных и подкалиберных снарядов бронепробиваемость напрямую связана с их скоростью, чем она выше, тем лучше. Именно поэтому для их применения используются артиллерийские системы. Для кумулятивных боеприпасов скорость не играет роли: кумулятивная струя образуется при любой скорости столкновения с мишенью. Поэтому кумулятивная боевая часть – идеальное средство для гранатометов, безоткатных орудий и противотанковых ракет, бомб и мин. Более того, слишком высокая скорость снаряда не дает образоваться кумулятивной струе.

Попадание кумулятивного снаряда или гранаты в танк часто приводит к взрыву боекомплекта машины и полностью выводит ее из строя. Экипаж при этом практически не имеет шансов на спасение.

Кумулятивные боеприпасы имеют весьма высокую бронебойность. Некоторые современные ПТРК пробивают гомогенную броню с толщиной более 1000 мм.

Недостатки кумулятивных боеприпасов:

  • довольно высокая сложность изготовления;
  • сложность применения для артиллерийских систем;
  • уязвимость перед динамической защитой.

Снаряды нарезных орудий стабилизируются в полёте за счет вращения. Однако центробежная сила, которая возникает при этом, разрушает кумулятивную струю. Придуманы разные «хитрости», для того чтобы обойти эту проблему. Например, в некоторых французских боеприпасах вращается только корпус снаряда, а его кумулятивная часть устанавливается на подшипниках и остается неподвижной. Но практически все решения этой проблемы значительно усложняют боеприпас.

Боеприпасы для гладкоствольных орудий, наоборот, имеют слишком высокую скорость, которая недостаточна для фокусирования кумулятивной струи.

Именно поэтому боеприпасы с кумулятивные боевые части более характерны для низкоскоростных или неподвижных боеприпасов (противотанковые мины).

Против подобных боеприпасов существует довольно простая защита – кумулятивная струя рассеивается с помощью небольшого контрвзрыва, который происходит на поверхности машины. Это так называемая динамическая защита, сегодня этот способ применяется очень широко.

Чтобы пробить динамическую защиту используется тандемная кумулятивная боевая часть, которая состоит из двух зарядов: первый устраняет динамическую защиту, а второй – пробивает основную броню.

Сегодня существуют кумулятивные боеприпасы с двумя и тремя зарядами.

Разновидности ПБ снарядов

В настоящее время разработано несколько эффективных конструкций подкалиберных снарядов, которые используются вооруженными силами различных стран. В частности, речь идет о следующем:

  • С неотделяющимся поддоном. Весь путь до цели снаряд проходит как единое целое. В пробитии же участвует только сердечник. Такое решение не получило достаточного распространения по причине повышенного аэродинамического сопротивления. В результате чего показатель бронепробития и точности с расстоянием до цели существенно падает.
  • С неотделяющимся поддоном для конического орудия. Суть такого решения в том, что при прохождении по коническому стволу поддон сминается. Это позволяет уменьшить аэродинамическое сопротивление.
  • Подкалиберный снаряд с отделяющимся поддоном. Суть в том, что поддон срывается силами воздуха или же центробежными силами (при нарезном орудии). Это позволяет существенно снизить сопротивление воздуха в полете.

Интересные факты

  • Первоначально кумулятивные снаряды назывались бронепрожигающими, так как считалось (исходя из формы пробитой воронки), что они именно прожигают броню. В реальности же при подрыве заряда температура облицовки достигает всего лишь 200—600 °C, что значительно ниже температуры её плавления.
  • Распространено мнение, что при попадании кумулятивной струи в танк или иную броневую цель находящиеся внутри погибают от баротравмы при резком повышении давления в замкнутом объеме после пробития брони, и это одна из причин, почему десант БМП предпочитает ездить снаружи, на верхнем листе, а не внутри машины, а также поэтому некоторые танкисты предпочитают езду с открытыми люками, для сброса давления. В реальности же всё наоборот: расширяющиеся газы сдетонировавшего кумулятивного заряда не могут проникнуть за пробитую броню в образовавшееся небольшое отверстие, а вот открытые люки приводят к «затеканию» ударной волны и поражению экипажа.

Танковая эволюция

Первые танки представляли собой медлительные подвижные артиллерийские батареи (иногда с несколькими орудиями), защищенные противопульным бронированием. Это были аналоги бронепоездов, с той разницей, что двигаться они могли не по рельсам, а по пересеченной местности и, само собой разумеется, по дорогам. Эволюция технических решений привела к новым способам применения бронетехники, она стала мобильнее и переняла часть функций кавалерии. Наиболее передовыми достижениями могла похвалиться советская инженерная школа, которая уже к концу тридцатых годов XX века пришла к общей концепции, определяющей облик современного танка. Все остальные страны до конца войны продолжали строить боевые машины по устаревшей схеме, с передней трансмиссией, узкими гусеницами, клепаными корпусами и карбюраторными двигателями. Несколько больших по сравнению с Великобританией и США успехов добилась нацистская Германия. Инженеры, строившие «Тигры» и «Пантеры» сделали ряд попыток увеличить стойкость своих машин, применив наклонное бронирование. Ширину гусениц немцам тоже пришлось изменить согласно условиям Восточного фронта. Длинноствольные орудия стали еще одним признаком, приближающим характеристики танков Вермахта к современным стандартам. На этом прогресс в стане наших врагов остановился.

2.3. Бронебойные боеприпасы

Для поражения бронированной техники (танки, самоходные артиллерийские орудия, бронетранспортёры и т.п.) используются боеприпасы, обладающие кумулятивным поражающим действием, а также кинетические бронебойные снаряды.

Виды бронебойных боеприпасов

1. Кумулятивные.

Кумулятивный эффект (эффект Манро) – усиление действия взрыва путем его концентрации в заданном направлении.

Кумулятивный эффект достигается применением заряда с кумулятивной выемкой конической или сферической формы, обращенной в сторону поражаемого объекта. В зависимости от формы кумулятивной выемки кумулятивный эффект проявляется либо в виде кумулятивной струи, либо – ударного ядра.

Заряды типа «кумулятивная струя»

В заряде с конической кумулятивной выемкой образуется кумулятивная струя – гиперзвуковая металлическая струя, перемещающаяся вдоль оси боеприпаса со скоростью до 10 км/с. Температур струи достигает 6-7 тыс. градусов, давление – 5-6 тыс. кгс/см². Сфокусированные в струе продукты детонации способны прожигать отверстия в броневых перекрытиях толщиной в несколько десятков сантиметров и вызывать пожары. Причём бронепробитие кумулятивной струи не зависит от прочности брони, а зависит от её плотности и толщины.

Заряды типа «кумулятивное ядро»

В заряде со сферической кумулятивной выемкой под действием ударной волны образуется ударное кумулятивное ядро – снаряд диаметром в четверть и длиной в один калибр (первоначальный диаметр выемки), который разгоняется до скорости 2,5 км/с. Бронепробитие ядра меньше, чем у кумулятивной струи, но зато сохраняется на расстоянии до тысячи калибров.

Для защиты от кумулятивных боеприпасов можно использовать экраны из различных материалов, расположенных на расстоянии 15-20 см от основной конструкции. В этом случае вся энергия струи расходуется на прожигание экрана, а основная конструкция остается целой.

2. Кинетические.

Действие кинетического снаряда определяется запасом его кинетической энергии и характеризуется бронепробиваемостью и поражающим действием за бронёй. Чем больше скорость и масса снаряда, меньше угол встречи с бронёй (угол между продольной осью снаряда и нормалью к поверхности брони в точке встречи), тем большую толщину он способен пробить. Поражение за бронёй проявляется в виде ударного, осколочного, фугасного и зажигательного действия снаряда.

Рис. 2.4. Кинетические и кумулятивные бронебойные боеприпасы

ГАЗ 3308 – обзор автомобиля

GAZ 3308 Sadko / ГАЗ 3308 Садко

Грузовики высокой проходимости ГАЗ 33081 “Садко” и 33086 “Земляк” впервые представлен в 1997 году. Эта уникальная машина пришла на смену легендарному советскому внедорожнику ГАЗ 66 (“Шишига”), унаследовав его великолепные ходовые качества. Помимо военного предназначения “Садко” получил заслуженное уважение в сельском хозяйстве, среди геологических предприятий, работающих почти во всех уголках планеты при крайне сложных условиях (горные районы, песчаные пустыни, джунгли). Основная масса деталей и узлов, в частности кабина, рамная компоновка, электрооборудование, достались ГАЗ 3308 от базовой модели 3309. В плане проходимости “Садко” не имеет абсолютно никаких аналoгов в России и во многом опережает западных конкурентов, благодаря чему пользуется весьма широким спросом.

Для ГАЗ 3308 предусмотрено два двигателя с турбонаддувом: ЯМЗ 5344 и ММЗ Д-245. Мотор Ярославского завода, отвечающий нормам Евро-4, начали устанавливать на “Садко” в 2013-м году (модификация 330880). Коробка передач – синхронизированная “5-ступка”. Вкупе с межколесным диффeренциалом такая компоновка трансмиссии и шасси обуславливает великолепные тягово-сцепные свойства на серьезном бездорожье, а большие углы свеса поспособствуют преодолению практически любого рельефа. При этом ГАЗ 3308 Садко способен пересечь почти метровый брод без каких либо трудностей.

История создания

Дата Событие
1864 г. Открытие кумулятивного эффекта, что позволило разработать принцип кумулятивного снаряда для производства боеприпасов
1910 г. – 1926 г. Исследование кумулятивного эффекта, создание кумулятивных снарядов и их испытание
1935 г. Создание первых удачных кумулятивных снарядов немецким ученым Францем Рудольфом
1940 г. Начало работ американских ученых по созданию кумулятивных снарядов и гранат. Использование кумулятивных снарядов немецкой армией
1942 г. Создание и принятие на вооружение СССР кумулятивных снарядов. Период, когда появились кумулятивные снаряды в артиллерии
1950 г. Создание учеными США первого снаряда с высокой стабилизацией и начало работ по совершенствованию кумулятивного оружия
1960 г. Разработка и испытание советских ученых сбалансированного кумулятивного снаряда
1990 г. Советские ученые создали первые кумулятивные боеприпасы тандемного вида с пробитием брони до 800 мм

В 1864 году военный инженер М. Бересков (он стал первым, кто придумал кумулятивный снаряд) открыл кумулятивный эффект, после чего начал испытание и применение разработок в разрушении твердых объектов. Военные были поражены, как действует кумулятивный снаряд на бронированную технику. Именно с этого момента западные ученые начали исследование данного эффекта.

С 1910 по 1926 годы продолжались исследовательские работы и создание разнотипных кумулятивных снарядов и мин. Целью этих опытов было нахождение правильной формы и материла, которые в совместном использовании могли пробивать объекты, имевшие большую толщину бронирования.

В 1935 году молодой немецкий ученый начал работы по созданию кумулятивных артиллерийских снарядов, которые активно использовались в начальном этапе Второй Мировой войны. Увидев потенциал кумулятивных снарядов, советские ученые на примере немецких боеприпасов начали разработку и производство собственного оружия. В 1942 году кумулятивные советские снаряды начали использоваться на артиллерийском оружии калибра 76 и 122 мм.

Устройство кумулятивного снаряда Второй Мировой войны

В середине 1950 года ученые США запатентовали новый тип кумулятивного снаряда, который обладал высокой стабилизацией во время полета и имел уникальную металлическую облицовку. В этом же году новый тип снарядов был принят на вооружение США.

В 1960 году создали уникальный кумулятивный снаряд имеющий новую структуру и материалы, которые во много раз превосходили кумулятивные снаряды Второй мировой войны. С этого момента были начаты упорные работы по улучшению уже имевшихся разработок.

В 1990 году был создан кумулятивный тандемный снаряд калибра 130 мм и имевший пробитие 800 мм.

Схема устройства кумулятивного снаряда

Кумулятивный снаряд состоит из частей:

  • взрыватель;
  • головка;
  • кумулятивная воронка;
  • кольцо;
  • разрывной заряд;
  • капсюль детонатор;
  • фиксатор;
  • трассер;
  • стабилизатор;
  • корпус;
  • лопасть.

Механизм действия кумулятивного заряда[править | править код]

Кумулятивная струяправить | править код

После взрыва капсюля-детонатора заряда, возникает детонационная волна, которая перемещается вдоль оси заряда.

Волна, распространяясь к облицовке поверхности конуса, схлопывает её в радиальном направлении, при этом в результате соударения частей облицовки давление в ней резко возрастает. Давление продуктов взрыва, достигающее порядка 1010Па (105 кгс/см²), значительно превосходит предел текучести металла, поэтому движение металлической облицовки под действием продуктов взрыва подобно течению жидкости, которое, однако, обусловлено не плавлением, а пластической деформацией.

Аналогично жидкости, металл облицовки формирует две зоны: большой по массе (порядка 70—90 %) медленно двигающийся «пест» и меньшую по массе (порядка 10—30 %) тонкую (порядка толщины облицовки) гиперзвуковую металлическую струю, перемещающуюся вдоль оси симметрии заряда, скорость которой зависит от скорости детонации взрывчатого вещества и геометрии воронки. При использовании воронок с малыми углами при вершине возможно получить крайне высокие скорости, но при этом возрастают требования к качеству изготовления облицовки, так как повышается вероятность преждевременного разрушения струи. В современных боеприпасах используются воронки со сложной геометрией (экспоненциальные, ступенчатые и др.) с углами в диапазоне от 30 до 60°; скорость кумулятивной струи при этом достигает 10 км/с.

Процесс запрессовки медной облицовочной юбки, она же в виде готового изделия и внутри снаряженного боеприпаса в разрезе

Поскольку при встрече кумулятивной струи с бронёй развивается очень высокое давление, на один-два порядка превосходящее предел прочности металлов, то струя взаимодействует с бронёй в соответствии с законами гидродинамики, то есть при соударении они ведут себя как идеальные жидкости. Прочность брони в её традиционном понимании в этом случае практически не играет роли, а на первое место выходят показатели плотности и толщины бронирования.

Теоретическая пробивная способность кумулятивных снарядов пропорциональна длине кумулятивной струи и квадратному корню отношения плотности облицовки конуса (воронки) к плотности брони. Практическая глубина проникновения кумулятивной струи в монолитную броню у существующих боеприпасов варьируется в диапазоне от 1,5 до 4 калибров.

При схлопывании конической оболочки скорости отдельных частей струи оказываются различными, и струя в полёте растягивается. Поэтому небольшое увеличение промежутка между зарядом и мишенью увеличивает глубину пробивания за счёт удлинения струи. Однако при значительных расстояниях между зарядом и мишенью непрерывность струи нарушается, что снижает бронебойный эффект. Наибольший эффект достигается на так называемом «фокусном расстоянии», на котором струя максимально растянута, но ещё не разорвана на отдельные фрагменты. Для выдерживания этой дистанции используют различные типы наконечников соответствующей длины.

При перемещении в твёрдой среде градиентно разорванная кумулятивная струя самоцентрируется, а диаметр трека по мере удаления от точки фокуса уменьшается. При движении разорванной на фрагменты кумулятивной струи в жидкостях и газах каждый фрагмент перемещается по собственной траектории, а диаметр трека по мере удаления от точки фокуса увеличивается. Этим объясняется резкое снижение пробивной способности высокоградиентных кумулятивных струй при использовании противокумулятивных экранов.

Использование заряда с кумулятивной выемкой без металлической облицовки снижает кумулятивный эффект, так как вместо металлической струи действует струя газообразных продуктов взрыва; однако при этом достигается значительно более сильное заброневое действие.

Ударное ядроправить | править код

Основная статья: Ударное ядро

Ударное ядро — компактная металлическая форма, напоминающая пест, образующаяся в результате сжатия металлической облицовки кумулятивного заряда продуктами его детонации.

Для образования ударного ядра кумулятивная выемка имеет тупой угол при вершине или форму сферического сегмента переменной толщины (у краёв толще, чем в центре). Под влиянием ударной волны происходит не схлопывание конуса, а выворачивание его «наизнанку». Полученный снаряд диаметром в четверть и длиной в один калибр (первоначальный диаметр выемки) разгоняется до скорости 2,5 км/с. Бронебойное действие ядра ниже, чем у кумулятивной струи, но зато сохраняется на расстоянии до 1000 калибров. В отличие от кумулятивной струи, состоящей лишь из 15 % массы облицовки, ударное ядро образуется из 100 % её массы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector