7 космических двигателей будущего

Ссылки

Первые шаги человека в мир ракетных технологий

Человечество уже достаточно долго знакомо с реактивным движением. Еще древние греки пытались использовать механические устройства, приводимые в движение сжатым воздухом. Позже уже стали появляться устройства и механизмы, совершающие полет за счет сгорания порохового заряда. Созданные в Китае, а затем появившиеся в Западной Европе первые примитивные ракеты были далеки от совершенства. Однако уже в те далекие годы стала обретать первые очертания теория ракетного двигателя. Изобретатели и ученые пытались найти объяснение процессам, которые возникали при горении пороха, обеспечивая стремительный полет физического, материального тела. Реактивное движение все больше и больше интересовало человека, открывая новые горизонты в развитии техники.

История с изобретением пороха дала новый импульс в развитии ракетной техники. Первые представления о том, что такое тяга реактивного двигателя, формировались в процессе длительных опытов и экспериментов. Работы и изыскания велись с использованием дымного пороха. Оказалось, что процесс горения пороха вызывает большое количество газов, которые обладают огромным рабочим потенциалом. Огнестрельное оружие натолкнуло ученых на идею использовать энергию пороховых газов с большей эффективностью.

Вплоть до начала XX века ракетная техника пребывала в первобытном состоянии, основываясь на самых примитивных представлениях о реактивном движении. Только в конце XIX века предпринимаются первые попытки объяснить с научной точки зрения процессы, способствующие возникновению реактивного движения. Оказалось, что с увеличением заряда увеличивалась сила тяги, которая являлась основным фактором работающего двигателя. Это соотношение объясняло, как работает ракетный двигатель и в каком направлении следует идти, чтобы добиться большей эффективности запущенного устройства.

Первенство в этой области принадлежит российским ученым. Николай Тихомиров уже в 1894 году пытался математически объяснить теорию реактивного движения и создать математическую модель ракетного (реактивного) двигателя. Огромный вклад в развитие ракетной техники внес выдающийся ученый XX столетия Константин Циолковский. Результатом его трудов стали основы теории ракетных двигателей, которыми в дальнейшем пользовался любой конструктор ракетных двигателей. Все последующие разработки, создание ракетной техники шли с использование теоретической части, созданной российскими учеными.

Циолковский, поглощенный теорией космических полетов, впервые озвучил идею использовать вместо твердых видов топлива жидкие компоненты — водород и кислород. С его подачи появился жидкостный реактивный двигатель, который сегодня является самым эффективным и работоспособным типом двигателя. Все последующие разработки основных моделей ракетных двигателей, которые использовались при запуске ракет, в основной своей массе работали на жидком топливе, где окислителем мог быть кислород, использовались другие химические элементы.

Немного физики или как это работает

Разные типы ракетных двигателей имеют существенные отличия в своей конструкции, но работа любого из них базируется на знаменитом третьем законе Ньютона, который гласит, что «каждому действию есть равное противодействие». РД выбрасывает струю рабочего тела в одном направлении, а сам, в соответствии с ньютоновским постулатом, движется в противоположную. Продукты сгорания топлива выходят через сопло, образуя тягу – это основы теории ракетных двигателей.

Главной характеристикой, определяющей эффективность подобных систем, является тяга (сила тяги). Она образуется в результате превращения исходной энергии в кинетическую реактивной струи рабочего тела. В метрической системе тяга ракетного двигателя измеряется в ньютонах, а американцы считают ее в фунтах.

Схема работы простейшего жидкостного ракетного двигателя

Еще одним важнейшим параметром ракетных двигателей является удельный импульс. Это отношение силы тяги (или количества движения) к расходу топлива в единицу времени. Данный параметр рассматривается в качестве степени совершенства того или иного РД, и является мерой его экономичности.

Химические двигатели работают за счет экзотермической реакции сгорания горючего и окислителя. Этот тип РД имеет две составные части:

  • Сопло, в котором тепловая энергия преобразуется в кинетическую;
  • Камеру сгорания, где происходит процесс горения, то есть превращения химической энергии топлива в тепловую.

Из истории данного вопроса

Ракетный двигатель – один из старейших видов двигателя, известных человечеству. Мы не можем точно ответить на вопрос, когда именно была изготовлена первая ракета. Есть предположение, что это сделали еще древние греки (деревянный голубь Архита Тарентского), но большинство историков считает родиной данного изобретения Китай. Это произошло примерно в III столетии нашей эры, вскоре после открытия пороха. Первоначально ракеты использовали для фейерверков и других развлечений. Пороховой ракетный двигатель был достаточно эффективен и прост в изготовлении.

Первая боевая ракета была разработана в 1556 году Конрадом Хаасом, который придумывал различные виды вооружений для императора Фердинанда I. Этого изобретателя можно назвать первым создателем теории ракетных двигателей, также он является автором идеи многоступенчатой ракеты – в трудах Хааса подробно описан механизм работы летательного аппарата, состоящего из двух ракет. Изыскания продолжил поляк Казимир Семенович, живший в середине XVII века. Однако все эти проекты так и остались на бумаге.

Практическое использование ракет началось только в XIX столетии. В 1805 году британский офицер Уильям Конгрив продемонстрировал пороховые ракеты, которые имели небывалую по тем временам мощность. Презентация произвела должное впечатление, и ракеты Конгрива были приняты на вооружение английской армии. Их главным преимуществом, по сравнению со ствольной артиллерией, была высокая мобильность и относительно небольшая стоимость, а основным недостатком – кучность огня, которая оставляла желать лучшего. К концу XIX века широкое распространение получили нарезные орудия, стрелявшие очень точно, поэтому ракеты были сняты с вооружения.

Примерно так использовались ракеты Конгрива. Современная реконструкция

В России данным вопросом занимался генерал Засядко. Он не только усовершенствовал ракеты Конгрива, но и первым предложил использовать их для полета в космос. В 1881 году российский изобретатель Кибальчич создал собственную теорию ракетных двигателей.

Огромный вклад в развитие этого направления техники внес еще один наш соотечественник – Константин Циолковский. Среди его идей жидкостный ракетный двигатель (ЖРД), работающий на смеси кислорода и водорода.

В начале прошлого столетия энтузиасты во многих странах мира занимались созданием жидкостного РД, первым добился успеха американский изобретатель Роберт Годдард. Его ракета, работающая на смеси бензина и жидкого кислорода, успешно стартовала в 1926 году.

Вторая мировая война стала периодом возвращения ракетного оружия. В 1941 году на вооружение Красной армии была принята установка залпового огня БМ-13 – знаменитая «Катюша», а в 1943 – немцы начали использование баллистической Фау-2 с жидкостным ракетным двигателем. Она была разработана под руководством  Вернера фон Брауна, который позже возглавил американскую космическую программу. Германией также было освоено производство КР Фау-1 с прямоточными реактивным мотором.

Ракета Фау-2. Немцы называли ее «оружие возмездия». Правда, оно не слишком помогло Гитлеру

В разные годы предпринимались попытки создания ракетных двигателей, работающих за счет энергии ядерного распада (синтеза), но до практического применения подобных силовых установок дело так и не дошло. В 70-е годы в СССР и США началось использование электрических ракетных двигателей. Сегодня они применяются для коррекции орбит и курса космических аппаратов. В 70-е и 80-е годы были эксперименты с плазменными РД, считается, что они имеют хороший потенциал. Большие надежды связывают с ионными ракетными двигателями, использование которых теоретически может значительно ускорить космические аппараты.

Однако пока почти все эти технологии находятся в зачаточном состоянии, и основным транспортным средством покорителей космоса остается старая добрая «химическая» ракета. В настоящее время за титул «самый мощный ракетный двигатель в мире» соревнуется американский F-1, участвовавший в лунном проекте, и советский РД-170/171, который использовался в программе «Энергия-Буран».

Литература

Модификации

Самым ярким отличием многих электростатических ионных двигателей является метод ионизации атомов ракетного топлива – бомбардировка электронами («NSTAR», «NEXT», «T5», «T6»), возбуждение радиочастотным излучением («RIT 10», «RIT 22», «N-RIT»), возбуждение микроволновым излучением («10», «20). С этим связана необходимость наличия в катоде и необходимость создания системы электроснабжения. Двигатели Кауфмана, как минимум, требуют наличия катода, анода и камеры, тогда как двигатели на радио- и микроволнах нуждаются в дополнительном генераторе радиоволн, но не требуют наличия анода и катода.

В сетчатых системах извлечения присутствуют небольшие отличия в плане геометрии сеток и использованных материалов, которые могут иметь косвенное значение для срока службы системы сеток.

История ионного двигателя

Впервые ионный двигатель был продемонстрирован Эрнстом Штулингером, ученым НАСА немецкого происхождения, а практическое воплощение ему придавал Гарольд Кауфман в Научно-исследовательском центре Льюиса при НАСА (ныне он носит имя Гленна), начиная с 1957 года и до начала 1960-х.

Ионный двигатель

Использование ионных двигателей в космосе было впервые демонстрировано на тестовых моделях ракет «SERT-1» и «SERT-2». В качестве реагирующей массы эти двигатели использовали ртуть. Первой моделью стала «SERT-1», запущенная 20 июля 1964 года, которая успешно доказала, что технология работает в космосе так, как было рассчитано. Вторая тестовая модель, «SERT-2», запущенная 3 февраля 1970 года, подтвердила возможность работы двух ионных двигателей на ртути в течение нескольких тысяч часов. Несмотря на демонстрации в 1960-х и 1970-х годах, они, тем не менее, редко использовались до конца 1990-х.

Научно-исследовательский центр Гленна при НАСА продолжал разрабатывать электростатические ионные двигатели с сеткой все 1980-е годы, разрабатывая солнечную энергетическую установку для НАСА типа «NSTAR», который был успешно использован для зонда «Deep Space 1» — первой миссии по выводу на межпланетную траекторию аппарата, которая использовала электродвигатель в качестве основной силовой установки. На данный момент этот двигатель установлен на аппарат «Dawn», следующий к астероидному поясу. Компания «Hughes Aircraft Company» (сейчас – «L-3 ETI») разработала ионный двигатель на ксеноне «XIPS» для позиционирования станции относительно геосинхронных спутников (используется более 100 двигателей). Сегодня НАСА работает над электростатическим ионным двигателем «HiPEP» с мощностью в 20-50 кВ, который будет обладать более высоким КПД, удельным импульсом и большим сроком службы по сравнению с «NSTAR». Компания «Aerojet» недавно завершила тестирования прототипа ионного двигателя «NEXT».

Начиная с 1970-х годов, совместное предприятие «ArianeGroup» и Гисенский университет занимались разработкой радиочастотного ионного двигателя. Двигатели «RIT-10» используются для полетов Европейского возвращаемого космического модуля «EURECA» и аппарата «ARTHEMIS». Британская компания «Qinetiq» разработала двигатели «T5» и «T6», первый из которых использовался для миссии «GOCE», а второй, вероятно, — для миссии «BepiColombo». Японцы, разработавшие микроволновой двигатель «10», использовали его для космического аппарата «Хаябуса».

Полвека в создании ионного двигателя

Понятие об электрической силовой установке присутствовало в течение 50 лет или более, но было сочтено слишком экспериментальным направлением, не способным взять на себя реализацию крупных проектов. Только теперь это направление начинает обретать реальные приложения. Например, для сохранения геостационарных спутников на правильной орбите, чтобы противостоять аэродинамическому сопротивлению в сильно разреженной атмосфере на высоте 200 км над поверхностью Земли. Или во время межпланетной миссии, такой как Deep Space 1- первой экспериментальной миссией, которая использовала ионные двигатели, чтобы изначально продемонстрировать возможности технологии в отношении астероида 9969 Braille и кометы Borrelly 15 лет назад, пишет «YAHOO».

Имелся и еще один проект со спутником, который в течение четырех лет до 2013 года изучал гравитационное поле Земли.

История

Впервые ионный двигатель появился в фантастике в 1910 году — в романе Дональда В. Хорнера «Аэроплан к солнцу: приключения авиатора и его друзей». Ионный двигатель широко представлен в фантастической литературе, компьютерных играх и кинематографе (так в «Звёздных войнах» экономичный ионный двигатель развивает скорость до трети световой и используется для перемещения в обычном пространстве на небольшие по космическим меркам расстояния — например в пределах планетарной системы), но для практической космонавтики стал доступен только во второй половине XX века. Реальный ионный двигатель по своим техническим характеристикам (и в первую очередь по силе тяги) значительно уступает своим литературным прообразам (так Эдгард Чуэйри образно сравнивает ионный двигатель с автомобилем, которому нужно двое суток для разгона с 0 до 100 км/ч).

Ионный двигатель является первым хорошо отработанным на практике типом электрического ракетного двигателя. Концепция ионного двигателя была выдвинута в 1917 году Робертом Годдардом, а в 1954 году Эрнст Штулингерruen детально описал эту технологию, сопроводив её необходимыми вычислениями.

В 1955 году Алексей Иванович Морозов написал, а в 1957 году опубликовал в ЖЭТФ статью «Об ускорении плазмы магнитным полем». Это дало толчок к исследованиям, и уже в 1964 году на советском аппарате «Зонд-2» первым таким устройством, выведенным в космос, стал плазменно-эрозионный двигатель конструкции А. М. Андрианова. Он работал в качестве двигателя ориентации с питанием от солнечных батарей.

Первый американский функционирующий ионный электростатический двигатель (создан в США в НАСА John H. Glenn Research Center at Lewis Field) был построен под руководством Гарольда Кауфманаruen в 1959 году.
В 1964 году прошла первая успешная демонстрация ионного двигателя в суборбитальном полёте (SERT I). Двигатель успешно работал в течение запланированной 31 минуты.
В 1970 году прошло испытание, призванное продемонстрировать эффективность долговременной работы ртутных ионных электростатических двигателей в космосе (SERT II). Малая тяга и низкий КПД надолго отвадили американских конструкторов от применения электрических и ионных двигателей.

Тем временем в Советском Союзе продолжалась разработка и улучшались характеристики. Были разработаны и применялись различные типы ионных двигателей на различных типах космических аппаратов. Двигатели СПД-25 тягой 25 миллиньютон, СПД-100, и другие серийно устанавливались на советские спутники с 1982 года.

В качестве основного (маршевого) двигателя ионный двигатель был впервые применён на космическом аппарате Deep Space 1 (первый запуск двигателя — 10 ноября г.). Следующими аппаратами стали европейский лунный зонд Смарт-1, запущенный 28 сентября 2003 года, и японский аппарат Хаябуса, запущенный к астероиду Итокава в мае 2003 года.

Следующим аппаратом НАСА, обладающим маршевыми ионными двигателями, стала (после ряда замораживаний и возобновления работ) АМС Dawn, которая стартовала 27 сентября 2007 года. Dawn предназначен для изучения Весты и Цереры и несёт три двигателя NSTAR, успешно испытанных на Deep Space 1.

Европейское Космическое Агентство установило ионный двигатель на борту спутника GOCE, запущенного 17 марта 2009 года на сверхнизкую околоземную орбиту высотой около 260 км. Ионный двигатель создаёт в постоянном режиме импульс, компенсирующий атмосферное трение и другие негравитационные воздействия на спутник.

Изначально Эриду назвали Зена

Галерея изображений

Системы видеонаблюдения

Потери

С этим самолетом связано 8 катастроф, самыми масштабными из которых были:

  • 16.09.1991. Самолет взлетел с перегрузом, механизация разрушилась в воздухе. Машина упала в лесу. Погибли 6 членов экипажа и 7 пассажиров.
  • 05.06.1994, перелет Ан-72В Новосибирск – Киев. Тогда в полете было обесточено бортовое оборудование. Причина – тепловой разгон аккумуляторов. Самолет произвел вынужденную посадку в Кургане, при этом он выкатился за пределы взлетно-посадочной полосы с разрушенным правым задним пневматиком. Экипаж и пассажиры не пострадали.
  • 10.02.1995. Ан-72В с тремя членами экипажа сопровождал прототип Ан-70 с 7 членами экипажа на борту. Самолеты столкнулись в небе над Бородянским районом Киевской области. Ан-72 уцелел и сумел совершить посадку в аэропорту Антонова. Ан-70 упал в лес, все члены экипажа погибли.
  • 07.06.2000, перелет Моздок-Москва. В воздухе произошла разгерметизация самолета. С высоты 8,5 тысяч метров самолет начал неуправляемое снижение, так как в результате гипоксии экипаж и пассажиры потеряли ориентацию. Тем не менее, экипаж сумел посадить самолет в Ростове-на-Дону.
  • 25.12.2012. Катастрофа под Шимкентом. Самолет пограничной службы республики Казахстан в сложных метеоусловиях упал на землю с высоты 800 метров. Причина – ошибка экипажа. Погибли 7 членов экипажа и 20 пассажиров.

Поиск решения

Как уже упоминалось, основная проблема ионных двигателей заключается в очень малой тяге, однако у ученых уже есть некоторые идеи для ее увеличения.

Первая — значительно увеличить количество электричества и силу магнитного поля, используемого для ускорения ионов. Для этого, вместо солнечных панелей, НАСА рассматривало возможность создания ионного двигателя, работающего на ядерном реакторе. Агентство планировало миссию по изучению ледяных спутников Юпитера. Новый ионный двигатель «NEXIS», работающий на ядерном реакторе, должен был доставить аппарат по очереди: к Ганимеду, Каллисто и, затем, к Европе.

Ионный двигатель «NEXIS»

Космический аппарат планировалось вывести на орбиту Земли по частям, произвести сборку, после чего запустить к Юпитеру с помощью 8 ионных двигателей. Полет до точки назначения длился бы от 5 до 8 лет. На изучение Каллисто, а затем Ганимеда отводилось 6 месяцев, затем аппарат должен был выйти на орбиту Европы и через 30 дней покинуть место назначения. При удачном течении экспедиции, аппарат мог бы посетить еще орбиту Ио — еще одного спутника Юпитера. Миссия была отменена в 2005 году.

Миссии

Действующие миссии

  • Starlink — проект компании Илона Маска SpaceX по выведению спутников на околоземную орбиту для создания глобальной сети интернет. Технология используется для маневрирования спутников и избежания их столкновения с космическим мусором[источник не указан 701 день].
  • Artemis
  • Хаябуса-2
  • BepiColombo. Запущен 20 октября 2018 года. ЕКА использует ионный двигатель в этой меркурианской миссии, наряду с гравитационными манёврами и химическим двигателем для перехода на орбиту вокруг Меркурия в качестве искусственного спутника. На аппарате работают самые мощные на сегодняшний день 4 ионных двигателя суммарной тягой 290 мН.

Завершённые миссии

  • SERT (англ. Space Electric Rocket Test, рус. Тест Космического Электрического Двигателя — программа NASA, в которой на спутниках впервые был использован ионный двигатель)
  • Deep Space 1
  • Hayabusa (вернулся на Землю 13 июня 2010 года)
  • Smart 1 (завершил миссию 3 сентября 2006 года, после чего был сведён с орбиты)
  • GOCE (после исчерпания запасов рабочего тела сошёл с орбиты)
  • LISA Pathfinder (ЕКА) использовал ионные двигатели в качестве вспомогательных для точного контроля высоты; деактивирован 30 июня 2017.
  • Dawn. 1 ноября 2018 года аппарат исчерпал все запасы топлива для маневрирования и ориентации, его миссия, длившаяся 11 лет, была официально завершена.

Планируемые миссии

  • Международная космическая станция. По состоянию на март 2011 года планировалась доставка на МКС электромагнитного двигателя (VASIMR) Ad Astra VF-200 с мощностью в 200 кВт VASIMR. VF-200 представляет собой версию VX-200. Поскольку доступная электрическая мощность на МКС меньше 200 кВт, проект ISS VASIMR включал в себя систему батарей, которая накапливала энергию для 15 минут работы двигателя.
  • Solar Orbiter.

Нереализованные миссии

Компьютерная модель Прометея-1

NASA ввело проект «Прометей», для которого разрабатывался мощный ионный двигатель, питающийся электричеством от бортового ядерного реактора. Предполагалось, что такие двигатели в количестве восьми штук могли бы разогнать аппарат до 90 км/с. Первый аппарат этого проекта Jupiter Icy Moons Explorer планировалось отправить к Юпитеру в 2017 году, однако разработка этого аппарата была приостановлена в 2005 году из-за технических сложностей. В 2005 году программа была закрыта. В настоящее время идёт поиск более простого проекта АМС для первого испытания по программе «Прометей».

Проект Джефри Лэндиса

Geoffrey A. Landisruen предложил проект межзвёздного зонда с ионным двигателем, получающим энергию через лазер от базовой станции, что даёт некоторое преимущество по сравнению с чисто космическим парусом. В настоящее время данный проект неосуществим из-за технических ограничений — например, он потребует силы тяги от ионных двигателей в 1570 Н при нынешних 20—250 мН(по другим данным рекорд тяги у современных ионных двигателей 5,4 Н).

Недостатки ионных двигателей

Возможность продолжительной работы ионного двигателя очень важна, так как он не способен развивать высокую тягу и моментально разгонять корабль до больших скоростей. В нынешних реализациях тяга ионных двигателей с трудом достигает 100 миллиньютонов.

Из-за такой конструктивной особенности, как минимум пока, такой двигатель не дает возможности стартовать с другой планеты, даже если у нее очень маленькая гравитация.

Получается, что использование таких двигателей для дальних путешествий пока невозможно без традиционных тяговых установок на химическом топливе. Зато, их совместное использование позволит гораздо более гибко пользоваться ускорением. Например, за счет обычного двигателя разгонять аппарат до более менее высокой скорости, а потом ускоряться еще больше за счет ионного двигателя.

Покорение дальнего космоса без новых технологий невозможно.

По сути, малая тяга на данный момент является главным недостатком таких двигателей, но ученые работают в этом направлении и в перспективе повысят его мощность, так как определенного прогресса удалось добиться уже сейчас.

Еще одной, пусть и не такой существенной, проблемой является надежность. В целом ионные двигатели достаточно надежны, но надо понимать, что их задача заключается в том, чтобы унести аппарат очень далеко и очень быстро. То есть работать он должен долго, чтобы не ставить под удар всю миссию. Поэтому, пока идут работы над увеличением мощности, разработчики стараются не забывать и о надежности.

Классификация ЭРД

Классификация ЭРД не устоялась, однако в русскоязычной литературе обычно принято классифицировать ЭРД по преобладающему механизму ускорения частиц. Различают следующие типы двигателей:

  • электротермические ракетные двигатели (ЭТД);
  • электростатические двигатели (ИД, СПД);
  • сильноточные (электромагнитные, магнитодинамические) двигатели;
  • импульсные двигатели.

Принятая в русскоязычной литературе классификация электроракетных двигателей

ЭТД, в свою очередь, делятся на электронагревные (ЭНД) и электродуговые (ЭДД) двигатели.

Электростатические делятся на ионные (в том числе коллоидные) двигатели (ИД, КД) — ускорители частиц в униполярном пучке, и ускорители частиц в квазинейтральной плазме. К последним относятся ускорители с замкнутым дрейфом электронов и протяжённой (УЗДП) или укороченной (УЗДУ) зоной ускорения. Первые принято называть стационарными плазменными двигателями (СПД), также встречается (всё реже) наименование — линейный холловский двигатель (ЛХД), в западной литературе именуется холловским двигателем. УЗДУ обычно называются двигателями с ускорением в анодном слое (ДАС).

К сильноточным (магнитоплазменным, магнитодинамическим) относят двигатели с собственным магнитным полем и двигатели с внешним магнитным полем (например, торцевой холловский двигатель — ТХД).

Импульсные двигатели используют кинетическую энергию газов, появляющихся при испарении твёрдого тела в электрическом разряде.

В качестве рабочего тела в ЭРД могут применяться любые жидкости и газы, а также их смеси. Тем не менее, для каждого типа двигателей существуют рабочие тела, применение которых позволяет достигнуть наилучших результатов. Для ЭТД традиционно используется аммиак, для электростатических — ксенон, для сильноточных — литий, для импульсных — фторопласт.

Недостатком ксенона является его стоимость, обусловленная небольшим годовым производством (менее 10 тонн в год во всём мире), что вынуждает исследователей искать другие РТ, похожие по характеристикам, но менее дорогие. В качестве основного кандидата на замену рассматривается аргон. Он также является инертным газом, но, в отличие от ксенона имеет большую энергию ионизации при меньшей атомной массе. Энергия, затраченная на ионизацию на единицу ускоренной массы, является одним из источников потерь КПД.

Как работает плазменный ракетный двигатель

Читайте также.

Примечания

Сущность, строение и принцип работы ионного двигателя:

Ионный двигатель – тип электрического ракетного двигателя, принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.

Впервые устройство ионного двигателя было предложено русским ученым К.Э. Циолковским в 1906 г. В дальнейшем осуществлялось теоретическая проработка данного вопроса. В настоящее время происходит его практическое воплощение.

Ионный двигатель работает, используя ионизированный газ и электричество.

Рабочим телом, как правило, является ионизированный инертный газ (аргон, ксенон и т. п.), но иногда и ртуть.

Инертный газ подается в ионизатор (газоразрядную, ионизирующую камеру) ионного двигателя.  Сам по себе газ нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Зажигание двигателя инициируется кратковременной подачей электронов, эмитируемых в газоразрядную (ионизирующую) камеру.  В ионизаторе высокоэнергетические электроны производят ионизацию рабочего тела – газа. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов.

Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток (положительно-заряженной и отрицательно-заряженной). Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против -225 на внешней).  В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя космический аппарат, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку (нейтрализатор), выбрасываются из двигателя под небольшим углом к соплу и потоку ионов.

Для выработки электричества используются солнечные батареи. Но в дальнейшем планируется использовать ядерные установки.

Использование внешнего магнитного поля в ионном двигателе позволяет повысить энергоэффективность системы.

Ионные двигатели характеризуются высоким импульсом. Они расходуют малое количество газа для совершения маневра.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector