Устройство и работа ракетного двигателя
Содержание:
- Ракетные двигатели: от китайских фейерверков до космических кораблей
- Здравствуйте!
- Ракетные двигатели: от китайских фейерверков до космических кораблей
- Приморский
- Совместимое снаряжение
- Жидкотопливные ракеты
- Перспективы развития ракетных двигателей
- Будущее ракетных двигателей
- Немного физики или как это работает
- Ядерные ракетные двигатели (ЯРД)
- Тяга
- Таможенные ограничения
- Биологическая разведка
- Галерея
- Прямоточные воздушно-реактивные двигатели
- Принцип работы турбовентиляторного двигателя
- Турбореактивный двигатель — плюсы и минусы
- Электроракетный двигатель, сущность, устройство, принцип работы:
- Вооружение
- Принцип работы реактивного двигателя
- Ссылки
- Новый «Союз»
- Функции законодательной власти
- Жидкостный реактивный двигатель
- Устройство реактивного двигателя
Ракетные двигатели: от китайских фейерверков до космических кораблей
Полеты в космос – без сомнения, одно из самых потрясающих достижений нашей цивилизации. Знаменитое гагаринское «поехали!» и первый шаг Армстронга по лунной поверхности – исторические вехи на пути к далеким планетам и другим звёздным системам. Ничего бы этого не было без ракетного двигателя, который позволил нам преодолеть силу гравитации планеты и дал возможность выйти на околоземную орбиту.
Устройство ракетного двигателя, с одной стороны, настолько незамысловато, что вы можете построить его дома самостоятельно, потратив на это буквально три копейки. Но, с другой стороны, конструкция космических и военных ракет до такой степени сложна, что только несколько государств в мире имеют технологии их изготовления.
Ракетный двигатель (РД) – это разновидность реактивного двигателя, рабочее тело и источник энергии которого находится непосредственно на борту летательного аппарата. Это его главное отличие от воздушно-реактивных двигателей. Таким образом, РД не зависит от кислорода атмосферы и поэтому может использоваться для полетов в космическом (безвоздушном) пространстве.
В настоящее время наиболее распространены так называемые химические ракетные двигатели, в которых удельный импульс образуется за счет сгорания топлива. Кроме них, существуют также ядерные и электрические двигатели. В этой статье мы расскажем о том, как работает ракетный двигатель, поведаем о его преимуществах и недостатках, а также представим современную классификацию РД.
Здравствуйте!
Я думаю, что пришла пора прояснить принцип действия всем нам известного «сердца», того самого, о котором я писал в предыдущей статье.
Паровая турбина элетростанции. Типичное устройство расширения.
Основным двигателем реактивной авиации мира является турбореактивный двигатель (ТРД) и именно его принцип работы мы сейчас без труда и лишних ненужных заморочек проясним.
Все мы прилежно учились в школе :-), и знаем, что в физике существует понятие «тепловая машина» (или «тепловой двигатель»). Человек долго подбирался к ее созданию.
Первые образцы приписывают даже Архимеду и потом Леонардо да Винчи. Но по настоящему она вошла в жизнь человека только в конце 60-х годов 18-го века, когда Д. Уатт построил свою паровую машину. Прогресс не остановить и современную жизнь уже невозможно представить без тепловых машин. Это не только тепловые электростанции и электроцентрали (в том числе, кстати и атомные станции), но и миллионы автомобилей различного назначения и, конечно же, мною очень любимые авиационные двигатели.
Теорию работы тепловой машины описывает раздел физики термодинамика. Не углубляясь в ее законы (принцип этого сайта Вам известен, если Вы читали страницу «Сайт об авиации» ), скажу, что тепловой двигатель – это машина для преобразования энергии в механическую работу. Работа — ее так сказать полезная «продукция». Этой энергией обладает используемое внутри машины так называемое рабочее тело, в качестве которого обычно выступает газ (или пар в паровой машине). Получает энергию рабочее тело при сжатии в машине, а полезную механическую работу мы потом будем иметь при последующем его расширении.
Но! Надо понимать, что в работоспособном тепловом двигателе работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. То есть вариант «на сколько сжали, на столько же и расширили» (все равно как в автомобильном амортизаторе) нам не подходит. Поэтому для сохранения нужной нам работоспособности газ перед расширением или во время него нужно еще и нагревать, а перед сжатием неплохо бы охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и сразу появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип. На его основе и работает турбореактивный двигатель.
Таким образом любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и неплохо бы холодильник. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера. Рабочее тело – воздух, который попадает в компрессор, там сжимается, далее идет в камеру сгорания, там нагревается, смешивается с продуктами сгорания ( керосина) и потом следует на турбину, вращая ее (а она, в свою очередь компрессор) и расширяясь, тем самым теряет часть энергии. И уже далее расходуется «полезная» энергия. Она превращается в кинетическую, когда газ сильно разгоняется в устройстве под названием реактивное сопло (которое обычно бывает сужающимся) и двигатель получает силу тяги за счет реакции струи. Все :-)… ТРД работает. Неплохо этот процесс показан в коротком ролике. Он без комментариев, но они здесь и не нужны :-). Скажу только, что показанное переднее колесо – это компрессор, далее кольцом вокруг вала – камера сгорания и за ней колесо турбины. Все схематично, но достаточно просто, чтобы понять как работает турбореактивный двигатель…
Более подробно об устройстве ТРД и его разновидностей мы поговорим в следующих статьях.
До встречи…
Р.S. Ролик рекомендую смотреть в большом формате.
Фотография кликабельна.
Ракетные двигатели: от китайских фейерверков до космических кораблей
Полеты в космос – без сомнения, одно из самых потрясающих достижений нашей цивилизации. Знаменитое гагаринское «поехали!» и первый шаг Армстронга по лунной поверхности – исторические вехи на пути к далеким планетам и другим звёздным системам. Ничего бы этого не было без ракетного двигателя, который позволил нам преодолеть силу гравитации планеты и дал возможность выйти на околоземную орбиту.
Устройство ракетного двигателя, с одной стороны, настолько незамысловато, что вы можете построить его дома самостоятельно, потратив на это буквально три копейки. Но, с другой стороны, конструкция космических и военных ракет до такой степени сложна, что только несколько государств в мире имеют технологии их изготовления.
Ракетный двигатель (РД) – это разновидность реактивного двигателя, рабочее тело и источник энергии которого находится непосредственно на борту летательного аппарата. Это его главное отличие от воздушно-реактивных двигателей. Таким образом, РД не зависит от кислорода атмосферы и поэтому может использоваться для полетов в космическом (безвоздушном) пространстве.
В настоящее время наиболее распространены так называемые химические ракетные двигатели, в которых удельный импульс образуется за счет сгорания топлива. Кроме них, существуют также ядерные и электрические двигатели. В этой статье мы расскажем о том, как работает ракетный двигатель, поведаем о его преимуществах и недостатках, а также представим современную классификацию РД.
Приморский
Многие интересуются: в средней полосе как растет кизил? Фото, которые размещают опытные садоводы Подмосковья, к примеру, свидетельствуют, что растения прекрасно развиваются и плодоносят
Важно лишь правильно выбрать сорт
Прекрасно зарекомендовал себя в этих регионах зимостойкий кизил Приморский. Деревце прекрасно переносит зимы средней полосы, каждый год, одаривая своих владельцев вкусными и полезными плодами. Это среднеспелый сорт – первые ягоды можно попробовать уже в конце июля. Как правило, они одинакового размера, да и созревают очень дружно.
Вначале они окрашены в насыщенный красный цвет. А со временем становятся практически черными, что является особенностью этого сорта.
Совместимое снаряжение
Жидкотопливные ракеты
Роберт Годдард в 1925 году испытал первый двигатель, работающий на жидком топливе. Его двигатель использовал для работы жидкий кислород и бензин. Также он стремился решить многие фундаментальные проблемы в конструкции двигателя ракеты, включая стратегии охлаждения, механизмы накачки и рулевые механизмы. Такие проблемы делают ракеты с жидким топливом столь сложными. Все это ему успешно удалось.
Главная идея максимально проста. В большинстве жидкотопливных ракетных двигателях окислитель и топливо (к примеру, жидкий кислород и бензин закачиваются в камеру сгорания). Там они сгорают, создавая поток горячих газов с высоким давлением и скоростью. Эти газы проходят через специальное сопло, которое делают их скорость еще большей (от 8 тыс. до 16 тыс. километров в час), а затем выходят. Ниже приведена простая схема, демонстрирующая этот процесс наглядно.
На схеме видно сложности обычного ракетного двигателя. Например, нормальное топливо – это холодный жидкий газ по типу жидкого кислорода или жидкого водорода. Но одной из серьезных проблем подобного двигателя является охлаждение сопла и камеры сгорания, поэтому сначала холодная жидкость циркулирует вокруг перегретых частей, дабы их охладить. Насосы должны генерировать высокое давление, чтобы преодолеть давление в камере сгорания, сжигаемой топливом. Это охлаждение и подкачка делает ракетный двигатель схожим на неудачную попытку сантехнической самореализации. Теперь рассмотрим все варианты комбинации топлива, которые применяется в жидкотопливных двигателях ракет:
- жидкий кислород и жидкий водород (главные двигатели космических шаттлов);
- жидкий кислород и бензин (первые ракеты Годдарда);
- жидкий кислород и керосин (применялись в программе «Аполлон» в 1 ступени «Сатурна-5»);
- жидкий кислород и спирт (применялись ракетах V2 немецкого производства);
- четырехокись азота/монометилгидразин (применялись в двигателях «Кассини»).
Перспективы развития ракетных двигателей
Помимо привычных для нас химических ракетных двигателей, сжигающих топливо с целью производства тяги, есть многие другие способы ее получить. Любая система, способная толкать массу. Если вы планируете ускорить бейсбольный мячик до огромной скорости, вам требуется жизнеспособный ракетный двигатель. При таком подходе единственная проблема – это выхлоп, который тянется через пространство. Именно столь небольшая проблема приводит к тому, что инженеры предпочитают газы горящим продуктам.
Большинство ракетных двигателей имеют крайне малые двигатели. Например, двигатели ориентации на спутниках не создают большую тягу. Иногда на них почти не применяется топливо – под давлением газообразный азот через сопло выбрасывается из резервуара.
Новые конструкции должны ускорить атомные частицы или ионы до высокой скорости, чтобы тяга стала максимально эффективной. Но пока будем делать электромагнитные двигатели и ждать того, что там еще придумает Элон Маск со своим SpaceX.
Будущее ракетных двигателей
Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе — это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.
Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо — газообразный азот под давлением выбрасывается из резервуара через сопло.
Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать электромагнитные двигатели и ждать, что там еще выкинет Элон Маск со своим SpaceX.
Источник
Немного физики или как это работает
Разные типы ракетных двигателей имеют существенные отличия в своей конструкции, но работа любого из них базируется на знаменитом третьем законе Ньютона, который гласит, что «каждому действию есть равное противодействие». РД выбрасывает струю рабочего тела в одном направлении, а сам, в соответствии с ньютоновским постулатом, движется в противоположную. Продукты сгорания топлива выходят через сопло, образуя тягу – это основы теории ракетных двигателей.
Главной характеристикой, определяющей эффективность подобных систем, является тяга (сила тяги). Она образуется в результате превращения исходной энергии в кинетическую реактивной струи рабочего тела. В метрической системе тяга ракетного двигателя измеряется в ньютонах, а американцы считают ее в фунтах.
Еще одним важнейшим параметром ракетных двигателей является удельный импульс. Это отношение силы тяги (или количества движения) к расходу топлива в единицу времени. Данный параметр рассматривается в качестве степени совершенства того или иного РД, и является мерой его экономичности.
Химические двигатели работают за счет экзотермической реакции сгорания горючего и окислителя. Этот тип РД имеет две составные части:
- Сопло, в котором тепловая энергия преобразуется в кинетическую;
- Камеру сгорания, где происходит процесс горения, то есть превращения химической энергии топлива в тепловую.
Ядерные ракетные двигатели (ЯРД)
Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.
История создания
Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.
Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.
Устройство и принцип действия
Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.
Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.
Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.
Преимущества и недостатки ЯРД
Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.
Тяга
«Сила» ракетного двигателя называется тягой. Тяга измеряется в ньютонах в метрической системе и «фунтах тяги» в США (4,45 ньютона тяги эквивалентны одному фунту тяги). Фунт тяги — это количество тяги, необходимое для удержания 1-фунтового объекта (0,454 кг) неподвижным относительно силы тяжести Земли. Ускорение земной гравитации составляет 9,8 м/с².
Одной из забавных проблем ракет является то, что топливный вес, как правило, в 36 раз больше полезной нагрузки. Потому что помимо того, что двигателю нужно поднимать вес, этот же вес и способствует собственному подъему. Чтобы вывести крошечного человека в космос, нужна огромная ракета и много-много топлива.
Обычная скорость для химических ракет составляет от 8000 до 16 000 км/ч. Топливо горит около двух минут и вырабатывает 3,3 миллиона фунтов тяги на старте. Три основных двигателя космического шаттла, например, сжигают топливо в течение восьми минут и вырабатывают около 375 000 фунтов тяги каждый в процессе горения.
Таможенные ограничения
Биологическая разведка
Галерея
Прямоточные воздушно-реактивные двигатели
Эта разновидность двигателей функционирует таким образом, что не нуждается в подвижных деталях. Воздушные массы нагнетаются в камеру сгорания непринужденным путем, благодаря торможению потоков об обтекатели входных отверстий. В дальнейшем совершается все то же, что и в обыкновенных реактивных двигателях, а именно воздушные потоки смешиваются с топливом и выходят как реактивные струи из сопел. Прямоточные воздушно-реактивные двигатели применяются в поездах, в воздушных суднах, в «беспилотниках», в ракетах, кроме того они могут устанавливаться на велосипеды или скутеры.
Источник
Принцип работы турбовентиляторного двигателя
Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.
При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.
Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.
Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.
Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.
Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.
Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.
Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.
Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.
Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.
Источник
Турбореактивный двигатель — плюсы и минусы
Электроракетный двигатель, сущность, устройство, принцип работы:
Электрический ракетный двигатель (электроракетный двигатель, ЭРД) – ракетный двигатель, принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц. В таких двигателях в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки космического аппарата.
По физике процессов электрический ракетный двигатель отличается от других разновидностей ракетных двигателей – от жидкостных и твердотопливных. Последние два используют химическую энергию.
Как и в обычном химическом ракетном двигателе в ЭРД также присутствует рабочее тело, которым выступает, как правило, газ (аргон, ксенон, аммиак, азот, гидразин и т.п.), иногда – жидкость, смеси жидкости и газа, жидкие металлы, пары металлов и твердые вещества (например, фторопласт), а также их смеси. Рабочее тело также истекает из сопла двигателя и создает тягу. В отличие от химического ракетного двигателя скорость истечения потока рабочего тела в ЭРД имеет высокое значение и составляет от 3 км/с и более. При этом верхняя граница скорости истечения частиц газа или другого рабочего тела неограниченна и по предварительным оценкам составляет порядка 210 км/с. Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. В настоящее время для электрических ракетных двигателей различных типов характерны следующие скорости истечения рабочего тела – от 10 до 60 км/с, электрическая мощность – от 0,8 до 7 КВт. КПД таких двигателей составляет порядка от 30 до 60%. Сам газ – рабочее тело (если в качестве рабочего тела используется газ) хранится в жидком виде.
В отличии от химическим двигателей электрические ракетные двигатели имеют исключительно высокий удельный импульс, составляющий до 100 км/с и более. Однако большой потребный расход энергии (1-100 кВт/Н тяги) и малое отношение тяги к площади поперечного сечения реактивной струи (не более 100 кН/м2) ограничивают максимальную целесообразную тягу ЭРД несколькими десятками ньютон. Недостатком электрических ракетных двигателей также является малое ускорение космического аппарата, которое составляет десятые или даже сотые доли ускорения свободного падения (g), что ограничивает применение таких двигателей только космическим пространством. Поэтому для запуска космического аппарата с Земли к другим планетам необходимо комбинировать обычные химические ракетные двигатели с электрическими.
Для ЭРД характерны малые размеры – порядка 0,1 м и более, а также масса порядка нескольких кг.
Вооружение
Десять торпедных аппаратов калибра 533 мм расположены под углом побортно в районе ограждения выдвижных устройств.
За ограждением находятся 8 вертикальных ракетных шахт, в каждой из которых размещается по 4 ракеты. Возможность комбинировать ракетное вооружение дает гибкость в выполнении широкого набора боевых задач — от борьбы с субмаринами и поражения стационарных наземных целей до уничтожения всех типов надводных кораблей противника крылатыми ракетами систем «Калибр» и «Оникс».
По заявлению гендиректора предприятия-проектировщика субмарины — конструкторского бюро «Малахит» Владимира Дорофеева, многоцелевая атомная подводная лодка проекта 885 «Ясень» способна применять все находящиеся на вооружении ВМФ РФ крылатые ракеты морского базирования. Ясень-М также способна будет применять перспективные крылатые ракеты «Циркон». Следующим поколением после проекта «Ясень-М» будут подводные лодки проекта «Хаски», которые по состоянию на 2017 год находятся в разработке.
Принцип работы реактивного двигателя
В общем виде принцип работы реактивного двигателя практически аналогичен принципу работы ядерного двигателя. Для первого применяется химическая движущая энергия, для вотрого же — энергия ядерных элементов.
Многие из нас, особенно мужская половина населения (на службе в армии, на охоте, в тире, на полигоне), стреляли из огнестрельного оружия и, соответственно, чувствовали на себе действие реактивной силы в виде отдачи. Этот же принцип, основанный на законе сохранения импульса, применяется в реактивных двигательных установках, в которых главным двигательным веществом является топливо.
Если рассмотреть вариант реактивного двигателя, функционирующего на керосиновом топливе, то в смесительном отсеке агрегата, где топливо смешивается с окислителем и происходит горение состав, выпускается огромнейшая энергия в виде тепла и мгновенного повышения давления в 10-20-30 и более раз выше атмосферного.
При постоянном поступлении топлива и окислителя (воздуха, жидкого кислорода, азотной кислоты) выходная кинетическая энергия рабочей отработанной смеси будет обладать высоким движущим импульсом. И истекающие струи через «Лавальское» сопло агрегата в окружающее пространство будут приводить в движение установку за счет выталкивающего момента.
Ссылки
Новый «Союз»
Активная фаза разработки ракеты среднего класса «Союз-5» началась в 2016 году. Планируется, что её будут использовать как для пилотируемых миссий, так и для коммерческих пусков. Старты будут осуществляться с космодромов Байконур и Восточный.
Для этих целей на Байконуре проводятся работы по модернизации стартового комплекса в рамках российско-казахстанского проекта «Байтерек».
Также по теме
«Давно пытались создать аналог»: в США заявили о готовности заменить российские двигатели РД-180
Двигатели BE-4 производства компании Blue Origin, принадлежащей владельцу Amazon Джеффу Безосу, выбраны в качестве силовых установок…
«Союз-5» — ракета среднего класса, которую создали на замену ракете-носителю «Зенит». Производство «Зенита» прекратили в связи с ухудшением российско-украинских отношений», — пояснил Моисеев.
На второй ступени «Союза-5» будут использоваться два двигателя РД-0124МС — модернизированные двигатели от третьей ступени ракеты «Союз-2.1Б».
В 2018 году были завершены эскизные работы, после чего «Роскосмос» заключил госконтракт с РКК «Энергия» на сумму 61,2 млрд рублей на создание и испытание ракеты «Союз-5».
В рамках лётных испытаний, запланированных на 2022—2025 годы, с космодрома Байконур будут выполнены четыре запуска «Союза-5». Согласно планам, в 2023 году будет осуществлён пуск с новым российским пилотируемым кораблём «Федерация». Аппарат будет работать в беспилотном режиме. Годом позже должен быть произведён и пилотируемый запуск.
Производиться «Союз-5» будет в РКЦ «Прогресс».
Функции законодательной власти
Жидкостный реактивный двигатель
Тот, кто стрелял из огнестрельного оружия или просто наблюдал этот процесс со стороны, знает, что существует сила, которая непременно оттолкнет ствол назад. Причем при большем количестве заряда отдача непременно увеличивается. Так же работает и реактивный двигатель. Принцип работы его схож с тем, как происходит отталкивание ствола назад под действием струи раскаленных газов.
Что касается ракеты, то в ней процесс, во время которого происходит воспламенение смеси, является постепенным и непрерывным. Это самый простой, твердотопливный двигатель. Он хорошо знаком всем ракетомоделистам.
В жидкостном реактивном двигателе (ЖРД) для создания рабочего тела или толкающей струи применяется смесь, состоящая из топлива и окислителя. Последним, как правило, выступает азотная кислота или жидкий кислород. Топливом в ЖРД служит керосин.
Принцип работы реактивного двигателя, который был в первых образцах, сохранен и до настоящего времени. Только теперь в нем используется жидкий водород. При окислении этого вещества удельный импульс увеличивается по сравнению с первыми ЖРД сразу на 30%. Стоит сказать о том, что идея применения водорода была предложена самим Циолковским. Однако существующие на тот момент трудности работы с этим чрезвычайно взрывоопасным веществом были просто непреодолимы.
Каков принцип работы реактивного двигателя? Топливо и окислитель попадают в рабочую камеру из отдельных баков. Далее происходит превращение компонентов в смесь. Она сгорает, выделяя при этом колоссальное количество тепла под давлением в десятки атмосфер.
Компоненты в рабочую камеру реактивного двигателя попадают по-разному. Окислитель вводится сюда напрямую. А вот топливо проходит более длинный путь между стенками камеры и сопла. Здесь оно разогревается и, уже имея высокую температуру, вбрасывается в зону горения через многочисленные форсунки. Далее струя, сформированная соплом, вырывается наружу и обеспечивает летательному аппарату толкающий момент. Вот так можно рассказать, какой имеет реактивный двигатель принцип работы (кратко). В данном описании не упоминаются многие компоненты, без которых работа ЖРД была бы невозможной. Среди них компрессоры, необходимые для создания нужного для впрыска давления, клапана, питающие турбины и т. д.
Устройство реактивного двигателя
С первого взгляда кажется устройство конструкции реактивной установки достаточно простым, однако характеристики использования топлива и его сгорания требуют применения высокопрочных материалов.
На рисунке 4 изображено устройство реактивного двигателя.
Из рисунка 4 видно, что на входе в аппарат установлен вентилятор всасывающий воздух в двигатель. Вентилятор состоит из мощных и объемных по размеру лопастей, которые, как правило, изготавливаются из титана. Далее вслед за вентилятором установлен многоступенчатый турбокомпрессор для подачи воздуха непосредственно в камеру, где происходит сгорание рабочего тела.
После воспламенения и сгорания поток реактивных газов направляется на рабочие лопатки турбоагрегата, чем и приводят его во вращение. На валу турбины горячей ступени имеется жесткая связь с компрессором, который вращается от работы турбины.
Отработанный газовый вихрь через сопла набирает реактивную скорость и покидает полость аппарата. Для предотвращения перегрева и расплавки на сопла подводится охлаждающий воздух от турбокомпрессора по специальным каналам в корпусе двигателя.