В великобритании хотят построить первую в мире термоядерную электростанцию

С нуля до 63%

В ноябре 1985 года на встрече в Женеве лидеры США и СССР договорились о совместном исследовании термоядерной энергии в мирных целях – это и стало началом проекта. Уже через год был Евратом, СССР, США и Япония подписали договор.

Работа над конструкцией ITER началась в 1988 году и продолжалась до утверждения финальной версии в 2001-м.

В 2003 году к консорциуму для работы над ITER присоединились Китай и Южная Корея, в 2005-м – Индия. Тогда же выбрали и место для строительства: окрестности Сен-Поль-ле-Дюранс в Провансе, Франция, близ научно-исследовательского центра ядерной энергетики Кадараш.

Межгосударственное соглашение о создании ITER подписали министры стран-участниц 21 ноября 2006 года, а в октябре 2007-го начала работу организация ITER Organization – юридическое лицо, ответственное за строительство, работу и последующий демонтаж реактора.

Техники работают внутри здания, где будут изготовлены четыре катушки полоидального поля на строительной площадке Международного термоядерного экспериментального реактора ITER в окрестностях Сен-Поль-ле-Дюранс в Провансе

Площадку начали готовить еще в 2007-м, строить – в 2010-м. Параллельно страны-участницы стали работать над элементами комплекса ITER: Индия строит для проекта криостат, в США разрабатывают центральную магнитную катушку (ее силы хватит, чтобы поднять авианосец), ЕС и Корея готовят вакуумную камеру, Китай с Россией поставляют сверхпроводники (всего понадобится 100 000 км таких проводников), часть катушек и различные электротехнические компоненты, Япония готовит катушки тороидального поля.

По состоянию на конец июня 2019 года проект был готов “более чем на 63%”, отмечали в ITER Organization. Завершены более 70% зданий, началась установка первых компонентов самого реактора. Полноценно фаза монтажа должна начаться в следующем году, по мере постройки и доставки всех необходимых компонентов: например, Китай 23 сентября построил первую 400-тонную магнитную катушку, ее доставят на место строительства ITER к декабрю.

По сложности и технологичности ITER превосходит многие масштабные научные стройки века, в том числе Большой адронный коллайдер.

“Коллайдер – это всего лишь вакуумная установка, в которой ускоряется пучок протонов, это задача более простого уровня. ITER – это физика плазмы, а плазма – это столько степеней свободы, столько неустойчивостей, со всеми ними надо справиться, – рассказал Радио Свобода глава российского агентства проекта ITER Анатолий Красильников. – С точки зрения большого количества параметров, которые надо одновременно учитывать, ITER, конечно, намного более сложная проблема, чем коллайдер. Ну и ITER подороже”.

Столь сложный международный проект на базе передовых технологий действительно дорог. Если на старте бюджет проекта оценивался в €5 млрд, то к 2017-му он уже успел перешагнуть отметку в €20 млрд: общую цифру сложно оценить, так как правительства сами определяют уровень расходов на те или иные компоненты, ими производимые. Участники проекта передают не только деньги, но и построенные компоненты. В российском бюджете на ITER в 2020-2022 годах заложили 11,8 млрд рублей (около $180 млн).

Шаг 1: Сборка вакуумной камеры

Для проекта потребуется изготовить вакуумную камеру высокого качества.

Приобретите две полусферы из нержавеющей стали, фланцы для вакуумных систем. Просверлим отверстия для вспомогательных фланцев, а затем сварим всё это вместе. Между фланцами располагаются уплотнительные кольца из мягкого металла. Если вы раньше никогда не варили, было бы разумно, чтобы кто-то с опытом сделал эту работу за вас. Поскольку сварные швы должны быть безупречны и без дефектов. После тщательно очистите камеру от отпечатков пальцев. Поскольку они будут загрязнять вакуум и будет трудно поддерживать стабильность плазмы.

Крафт[править | править код]

Для постройки работающей конструкции реактора потребуются следующие блоки:

Ингредиенты Процесс Результат Описание

Компьютер +Микросхема потока энергии +Катушка термоядерного реактора

Консоль управления термоядерным реактором Позволяет производить операции с термоядерным реактором. Реактор включится сразу как только будут загружены реагенты и требуемая энергия. Для ручного управления установите регулятор для механизмов и прикрепите к нему рычаг.

Микросхема потока энергии +Сверхпроводник (предмет) +Сверхпроводниковый конденсатор

Инжектор энергии Хранит 10 000 000 еЭ для использования термоядерным реактором. У каждого блока своё хранилище энергии и запитывать их нужно все сразу.

Микросхема потока энергии +Сундук +Высокотехнологичный механизм +Помпа илиМодуль помпы

Инжектор материалов Впрыскивает в термоядерный реактор жидкости. Внутренняя ёмкость составляет 10 вёдер (капсул), вдобавок в верхний слот можно положить стопку капсул, которые будут загружаться автоматически. Кроме того, загруженные жидкости можно вылить обратно в капсулы.

Микросхема потока энергии +Высокотехнологичный механизм +Сундук +Помпа илиМодуль помпы

Экстрактор материалов Выводит синтезированные материалы из термоядерного реактора.

Нихромовая нагревательная спираль +Микросхема потока энергии +Сверхпроводник (предмет) +Высокотехнологичный механизм +Иридиевый отражатель нейтронов

Катушка термоядерного реактора Из катушек строится «кольцо» реактора.Судя по всему, это аналог кольцевой камеры Токамак.

Термоядерное оружие

Рис. 2. Водородная бомба

Риски ИТЭР

В настоящее время ИТЭР находится на полпути к своей первоначальной цели циркуляции плазмы.

Разработчики постоянно работают над прогнозированием и смягчением рисков, которые могут привести к дополнительным задержкам или затратам.

Конечной целью, конечно, является не просто циркулирующая плазма, но и плавление дейтерия и трития для создания “горящей” плазмы, которая генерирует значительно больше энергии, чем поступает в нее. Токамак ИТЭР должен генерировать 500 мегаватт электроэнергии, в то время как коммерческие термоядерные установки будут размещать более крупные реакторы, чтобы генерировать от 10 до 15 раз больше энергии. Согласно планам, 2000-мегаваттный термоядерный завод поставит 2 миллиона домов электричеством..

Если проект окажется успешным, ученые ИТЭР предсказывают, что термоядерные электростанции могут начать выходить в эксплуатацию уже к 2040 году по производству 2 гигаватт и более. Капитальные затраты на строительство АЭС должны быть аналогичны капитальным затратам нынешних АЭС ― около 5 миллиардов долларов за гигаватт. В то же время термоядерные электростанции просто используют дейтерий и тритий, и поэтому избегают “затрат на добычу и обогащение урана, или затрат на уход за радиоактивными отходами и их утилизацию.

Строительство атомной станции синтеза стоит больше, чем строительство станции ископаемого топлива. Цены на ископаемое топливо очень высоки, а расходы на топливо для синтеза незначительны, так что в течение срока службы электростанции расходы будут незначительны.

В то же время ископаемое топливо обходится дорого не только из-за финансовых значений. Огромные затраты на ископаемое топливо связаны с воздействием на окружающую среду, будь то из-за добычи полезных ископаемых, загрязнения окружающей среды или выброса парниковых газов. Синтез углерода – бесплатен.

Статья недели: ИИ помог обнаружить китайских рыбаков-браконьеров

Ученые из Южной Кореи, Японии, Австралии и США смогли обнаружить 900 китайских судов, которые незаконно ловили тихоокеанского кальмара в водах КНДР. Согласно резолюции Совбеза ООН, с 2017 года эта страна не должна разрешать иностранным судам рыбачить на своей территории.

Научный журнал Science Advances опубликовал подробную статью об этом. Чтобы обнаружить браконьеров, ученые использовали Автоматическую идентификационную систему (АИС), а также несколько видов спутниковых снимков. С помощью АИС корабли передают данные о своем местоположении и курсе. Этой системой пользуются не все суда, поэтому основную информацию исследователи получили, проанализировав изображения. Браконьеры часто используют яркие лампы, чтобы ночью привлечь кальмаров на поверхность воды. Ученые натренировали нейросеть распознавать свет на поверхности океана. Затем информацию проверяли при помощи снимков высокой четкости. Помимо крупных судов, нейросеть также нашла 3 тыс. небольших рыбацких лодок.

Ученые считают, что их метод поможет бороться с браконьерством, а значит, защитить многие виды рыб от угрозы вымирания.

Термоядерные реакторы в мире

Начиная с 1970 годов, начало коммерческого использования энергии синтеза постоянно отодвигалось на 40 лет. Однако в последние годы произошло многое, благодаря чему этот срок может быть сокращен.

Построено несколько токамаков, в том числе европейский JET, британский MAST и экспериментальный термоядерный реактор TFTR в Принстоне, США. Международный проект ITER в настоящее время находится в стадии строительства в Кадараше, Франция. Он станет самым крупным токамаком, когда заработает в 2020 годах. В 2030 г. в Китае будет построен CFETR, который превзойдет ITER. Тем временем КНР проводит исследования на экспериментальном сверхпроводящем токамаке EAST.

Термоядерные реакторы другого типа – стеллаторы – также популярны у исследователей. Один из крупнейших, LHD, начал работу в японском Национальном институте термоядерного синтеза в 1998 году. Он используется для поиска наилучшей магнитной конфигурации удержания плазмы. Немецкий Институт Макса Планка в период с 1988 по 2002 год проводил исследования на реакторе Wendelstein 7-AS в Гархинге, а в настоящее время – на Wendelstein 7-X, строительство которого длилось более 19 лет. Другой стелларатор TJII эксплуатируется в Мадриде, Испания. В США Принстонская лаборатория физики плазмы (PPPL), где был построен первый термоядерный реактор данного типа в 1951 году, в 2008 году остановила строительство NCSX из-за перерасхода средств и отсутствия финансирования.

Кроме того, достигнуты значительные успехи в исследованиях инерциального термоядерного синтеза. Строительство National Ignition Facility (NIF) стоимостью 7 млрд $ в Ливерморской национальной лаборатории (LLNL), финансируемое Национальной администрацией по ядерной безопасности, было завершено в марте 2009 г. Французский Laser Mégajoule (LMJ) начал работу в октябре 2014 года. Термоядерные реакторы используют доставленные лазерами в течение нескольких миллиардных долей секунды около 2 млн джоулей световой энергии в цель размером в несколько миллиметров для запуска реакции ядерного синтеза. Основной задачей NIF и LMJ являются исследования по поддержке национальных военных ядерных программ.

Управляемый синтез

Практически одновременно с созданием водородной бомбы встала задача осуществления на Земле контролируемого, «прирученного» процесса термоядерного синтеза без ядерного взрыва. Был выдвинут ряд идей создания сверхвысокой начальной температуры — использование концентрации многих лазерных лучей или электронных пучков. Одно время даже обсуждалась идея «холодного» термоядерного синтеза. Но наиболее серьезные исследования были связаны с возможностью создания сверхвысокой температуры с помощью мощного электрического разряда в водородной плазме.

Одна из первых идей была выдвинута в 1950 году в СССР военнослужащим, сержантом Олегом Лаврентьевым (1926–2011). Он не имел в это время даже законченного среднего образования, но его мечтой было стать физиком. На свои скудные сержантские средства он выписывал научные и научно-популярные журналы и покупал учебники по физике. Лаврентьев послал в адрес правительства и Академии наук письма с изложением своей идеи получения термоядерной энергии. Эта идея заключалась в создании кругового электрического разряда в водороде, термоизоляция которого обеспечивалась бы электрическими силами отталкивания. Письма О. Лаврентьева были переданы в организации, занимавшиеся ядерными взрывами, и в конце концов попали к И. Е. Тамму и А. Д. Сахарову, которые в это время работали над созданием водородной бомбы. Они организовали демобилизацию О. Лаврентьева и его приезд в Москву, получение им среднего образования и поступление на физический факультет МГУ. Но сама идея Лаврентьева оказалась несостоятельной. Электрические поля не могли обеспечить устойчивое состояние кругового разряда. Лаврентьев и сам убедился в этом. Впоследствии, получив физическое образование, он работал в научных институтах, занимаясь ядерной физикой.

Тамм и Сахаров использовали рациональное зерно лаврентьевской идеи. В водородной плазме электрический ток действительно должен быть кольцевым, а сама плазма должна представлять собой тор (баранку). Но удерживать круговой ток в пространстве могло только магнитное поле особой конфигурации — линии индукции этого поля должны как бы обвивать плазменный тор. Ученые назвали такое поле тороидальным. Воплощение в жизнь этой идеи было связано с решением многих научных и инженерных задач. И в уже далеком 1951 году в созданном главным научным руководителем урановой проблемы в СССР И. В. Курчатовым секретном научном институте, называвшемся тогда Лаборатория № 2 АН СССР или Лаборатория измерительных приборов, а попросту ЛИПАН или «двойка», появилось подразделение, которое начало воплощать в жизнь идею Тамма и Сахарова. Сегодня «двойка» превратилась в огромный Национальный исследовательский центр «Курчатовский институт», а подразделение, в котором начались работы по термояду, стало проектным центром ИТЭР, входящим в национальное агентство России по ИТЭР и в госкорпорацию «Росатом».

В 1951 году руководителями работ по осуществлению лабораторного термоядерного синтеза стали сотрудники И. В. Курчатова Л. А. Арцимович и И. Н. Головин — один из главных координаторов «мозгового штурма» проблемы. С 1973 года руководителем работы стал Б. Б. Кадомцев, а с 1975 года — Е. П. Велихов.

Texничecкиe xapaктepиcтики

Диагностика сердца ИТЭР

Россия строит чуть менее 10% реактора ИТЭР. Каждый день участники по несколько часов ведут обсуждение деталей проекта на онлайн-конференциях по темам, касающимся конкретных групп ученых и определенных стран. Автору этого текста пришлось покинуть кабинет как раз с началом такого онлайн-совещания, так и не успев задать эксперту всех вопросов. Зато интервью завершилось неожиданной экскурсией в чистый зал, где новосибирские физики уже сконструировали помещение для создания порт-плагов — бункеров размером с танк Т-60 и начиненных тысячами датчиков для измерения всех необходимых параметров горения плазмы. Это десятки тысяч видов различных измерений. Чаще всего это томографические измерения для постоянной фиксации и выявления различных характеристик плазмы. Через отдельные порты будет происходить собственно нагрев плазмы. Таких «танков» на реакторе 28, каждый — для решения своих задач. Все они будут закреплены непосредственно на вакуумной камере, поэтому их вес не должен превышать 50 тонн.

Четыре порт-плага (три верхних и один более крупный — экваториальный) создает Институт ядерной физики им. Г. И. Будкера СО РАН. В каждом порт-плаге своими измерениями займутся разные группы ученых из нескольких стран. В порт-плагах, сделанных в Новосибирске, предстоит работать научным группам из России, Европы, Индии, Кореи и США. Задача сибиряков — интегрировать абсолютно разные технологии измерения в единый комплекс, при этом не превысив параметры порт-плагов ни по массе, ни по занимаемой площади внутри бункера. Ученые из ФТИ имени Иоффе планируют регистрировать в плазме атомы перезарядки, ученые из Кореи — измерять уровень ультрафиолетового излучения, а американские специалисты собираются проводить СВЧ-диагностику плазмы.

Организации из перечисленных стран-участниц займутся сборкой порт-плага непосредственно в ИЯФ СО РАН. Для сборки таких объектов нужны, с одной стороны, огромная грузоподъемность кранов для перемещения и различных манипуляций с многотонными комплектующими, с другой — необходимо чистое помещение, чтобы на прецизионно точное оборудование не попала пыль. Зал с такими уникальными характеристиками, вероятно, будет похож на гигантскую операционную. Такое сравнение выглядит особенно уместно, если иметь в виду, что вакуумная камера с порт-плагами — это сердце ИТЭР, а постоянные измерения — это диагностика, необходимая для его жизни.

С этой целью в ИЯФ создали огромный зал и оснастили его подвесным краном и промышленными системами фильтрации поступающего воздуха. При открывании люка для загрузки оборудования с улицы из помещения наружу поступает сильный встречный поток воздуха, который не допускает попадания пыли внутрь зала. Первые испытания пройдут на макетах. Начало сборки запланировано на 2022–2023 годы.

Безопасна ли реакция термоядерного синтеза

Главным преимуществом реакции термоядерного синтеза, проходящей внутри токамака, является ее безопасность. Можно удивиться, как такое возможно при достижении таких высоких температур, но это действительно так.

Все из-за того, что плотность плазмы в миллион раз меньше плотности атмосферы. Благодаря такой особенности работы, взрыв из-за внутреннего давления просто невозможен. Да и если температура начнет падать, плазма просто будет, как говорят физики, ”осыпаться”. Плюс, топливо подается в течение всей реакции и для ее остановки достаточно просто прекратить его подачу. Например, атомную станцию просто выключить нельзя и я уже рассказывал, почему.

Единственной опасностью является только то, что изотоп трития обладает небольшой радиоактивностью. Впрочем, она не такая высокая, чтобы переживать по этому поводу. Она существенно ниже, чем у топлива для атомной станции. Например, период полураспада уранового топлива составляет почти 5 миллиардов лет (то есть почти никогда), а трития — всего 12 лет. Да и используется его минимальное количество.

А еще можно добавить, что технологию реакции термоядерного синтеза нельзя применить в военных целях. Создание плазмы вне токамака пока невозможно, а использование его самого в качестве оружия слабо осуществимо из-за того, что он не взрывается.

Конструкции термоядерных реакторов

Сегодня для создания высокотемпературной плазмы используются два основных типа устройств:

  • квазистационарные;
  • импульсные.

К первой группе относятся устройства, в которых нагрев плазмы, а также ее удержание осуществляется с помощью мощного магнитного поля — токамаки, стеллараторы, магнитные ловушки. Они отличаются лишь конфигурацией магнитного поля.

Российский токамак Т-15МД. Его запуск состоится в декабре 2020 года

Сейчас основные надежды инженеров и ученых связаны с токамаками. Эти устройства представляют собой тороидальные камеры со множеством внешних магнитов, которые удерживают плазму, не давая ей коснуться стенок. Кроме того, электрический ток непосредственно проходит по плазменному шнуру в вакуумной камере, что является главным отличием токамаков от других устройств данного типа. В мире построено более трехсот токамаков, такую же схему будет иметь реактор, разрабатываемый сейчас в рамках проекта ITER. В 2003 году на токамаке Tore Supra был поставлен рекорд длительности удержания плазмы – 6,5 минут. Еще в 90-е годы на токамаках TFTR и JET удалось добиться получения энергии, практически равной затратам на разогрев плазмы. Никакие другие установки похвастать подобным достижениями пока не могут.

Вторым распространенным типом термоядерного реактора является стелларатор. В нем магнитное поле для удержания плазмы создается только внешними источниками

Такие устройства имеют более сложную конструкцию по сравнению с токамаками, и стоят они дороже, но поведение плазмы в стеллараторах более спокойное и предсказуемое, что очень важно для коммерческого использования технологии

Самый большой в мире реактор-стелларатор Wendelstein 7-X. Его строили почти 15 лет

Импульсные или инерциальные системы работают совсем по другому принципу. Если в токамаках и стеллараторах до огромных температур нагревается плазма сравнительно небольшой концентрации, то в инерциальных устройствах она сжимается до огромной плотности с помощью лазерного излучения или потока частиц. Подобная схема выглядит весьма заманчиво, но на практике все не так просто.

Первые попытки создать инерциальное устройство относятся к 60-м годам прошлого века. Первоначально из термоядерного топлива формировали небольшой шарик, который облучали множеством мощных лазерных лучей. Однако оказалось, что сфера нагревается неравномерно и слабо. Чтобы решить эти проблемы, мишень стали заключать в особый контейнер с отверстиями, через которые проникают лазерные лучи. Излучение поглощается специальными кристаллами, что превращают поступающее излучение в ультрафиолетовое. Прогрессу инерциального метода способствовала концепция «быстрого поджига», предполагающая использование двух лазерных импульсов: один сжимает топливную капсулу, другой – разогревает ее.

Достоинства термоядерной энергетики

Энтузиазм вокруг термоядерной энергии, наблюдавшийся в 60-е и 70-е годы, давно прошел. Теперь сами ученые нехотя признают, что в ближайшее десятилетие работающий термоядерный реактор мы, скорее всего, не увидим. Несмотря на это, попытки «зажечь» искусственное солнце не прекращаются. Выгоды, которые несет укрощение этой технологии, легко объясняют подобную настойчивость.

Колоссальная энергоэффективность

Чтобы понять, какие «пряники» может дать человечеству термоядерная энергия, нужно сравнить ее с обычным ископаемым горючим. Сжигание одного грамма угля дает 34 тыс. джоулей, газа или нефти — 44 тыс. джоулей, древесины — всего 7 тыс. джоулей. При слиянии ядер дейтерия и трития выделяется 17,6 мегаэлектронвольт энергии, что в пересчете на один грамм составляет 170 млрд джоулей тепла. Это количество равняется общемировому потреблению за 14 минут.

Еще один прототип термоядерной установки. Ученые пытаются получить плазму, пропустив через смесь дейтерия и тритий огромный по мощности электрический заряд

Термоядерный синтез – самый эффективный из известных на сегодня способов получения энергии, включая даже обычные ядерные реакторы. Из одного килограмма исходной смеси, в термоядерном реакторе можно получить в три раза больше энергии, чем в ядерном. В 86 г дейтерий-тритиевой смеси находится столько же энергии, как в 1 тыс. тонн высококачественного угля.

Запасы ископаемого топлива не бесконечны. В один «прекрасный» момент мы полностью исчерпаем месторождения угля, нефти и природного газа. Сырье для термоядерного синтеза можно получать буквально из воды. Теоретически управляемый синтез способен открыть человечеству новую эпоху практически бесплатной энергии, кардинально изменив мировую экономику и повседневную жизнь людей.

Безвредность

Сжигание нефти, угля и газа наносит серьезный вред окружающей среде и способствует изменениям климата. Долгое время их альтернативой считался «мирный атом», однако, атомные станции имеют очевидные недостатки. Во время работы они действительно практически не вредят экологии, но аварии на подобных объектах приводят к катастрофическим последствиям колоссальных масштабов. Чернобыль и Фукусима – наглядное тому подтверждение.

Масса топлива, необходимая для работы термоядерного реактора, измеряется граммами, а отходами «производства» являются безвредные вещества типа водорода или гелия. Да, для дейтерий-тритиевой реакции необходим радиоактивный тритий, но вес его будет мизерным.

Безопасность

Термоядерный реактор никогда не взорвется: процессы, проходящие в нем, не являются самоподдерживающимися. В самой его конструкции заложены механизмы, препятствующие распространению радиоактивных веществ. Например, камера, в которой происходит реакция, должна быть герметичной, иначе система просто не будет работать.

Российский лазерный термоядерный реактор, установленный в Сарове

Управляемый синтез не может быть источником материалов для производства оружия массового поражения. Хотя это и кажется не особенно важным, но данный фактор сыграл серьезную роль в развитии и распространении ядерной энергетики. Кто не верит, может спросить у Ирана и Северной Кореи. Невозможность военного использования и отсутствие радиоактивных материалов уменьшает уязвимость термоядерных реакторов для террористической угрозы.

Создание энергии[править | править код]

Генерация энергии осуществляется за счёт двух реакций: дейтерий + тритий и дейтерий + гелий-3. Первая для запуска требует 40 000 000 энергии, после чего реактор будет потреблять 4096 еЭ/т в течение 128 тактов (то есть 524 288 еЭ) на создание каждой капсулы плазмы. Во втором случае для запуска требуется 60 000 000 еЭ и 2048 еЭ/т в течение 128 тактов (262 144 еЭ) на поддержание каждой реакции синтеза плазмы. Второй способ выгоднее, но требует минимум 6 . Полученные капсулы с плазмой нужно использовать для получения энергии в плазменном генераторе. Каждая капсула приносит 8 192 000 энергии, что гораздо больше, чем тратится на их синтез. Но, если реакция остановится (например, для её продолжения не будет ресурсов или энергии), то при следующем запуске вам придётся опять затратить большое количество энергии при старте. Поэтому выгода будет только в том случае, если за один запуск обрабатывать большое количество материала.

Ингредиенты Процесс Результат
Капсула с тритием,Капсула с дейтерием

Старт: 40 000 000 еЭ

Энергия: 524 288 еЭ

Потребление: 4096 еЭ/т

Время: 6,4 сек.

Капсула сгелиевой плазмой
Капсула с гелием-3,Капсула с дейтерием

Старт: 60 000 000 еЭ

Энергия: 262 144 еЭ

Потребление: 2048 еЭ/т

Время: 6,4 сек.

Море зеленой энергии

— Инициатором этой работы выступил академик Евгений Велихов еще в разгар перестройки в СССР, — вспоминает ученый. — Тогда же Михаилу Горбачеву удалось договориться с Рональдом Рейганом о совместном создании термоядерного реактора. Соединенные Штаты Америки в консультациях с Японией и Европейским сообществом выдвинули предложение относительно того, каким образом осуществлять такую деятельность. Уже в 1988 году началась фаза концептуального проектирования, затем был создан технический проект.

К участникам проекта присоединились Китай, Корея и Индия. Местом строительства выбрали юг Франции, неподалеку от Марселя, где находятся французский ядерный центр Кадараш и Комиссариат по альтернативным видам энергетики CEA. Кроме большого опыта в области создания оборудования для ядерной энергетики для строительства ИТЭР нужен был участок, доступный для крупного судоходства, поскольку масса деталей реактора составляет сотни тонн и превышает допустимые пределы возможностей наземных видов грузового транспорта.

Первый прообраз термоядерного реактора — ТОКАМАК (тороидальная камера с магнитными катушками) — был изобретен и построен в СССР в 1954 году. Она представляет собой обмотанную магнитными катушками вакуумную камеру, внутри которой находится плазма, нагретая до десятков миллионов градусов. С того момента как в СССР появился первый работающий ТОКАМАК, в мире начался настоящий бум в области физики плазмы. Все поняли, что создание настоящего термоядерного реактора позволило бы отказаться от всех остальных видов энергии, прекратить сжигание топлива и выбросы в атмосферу двуокиси углерода и целого списка других вредных веществ. Непрерывно горящая плазма, процесс горения которой однажды вышел бы в режим самоподдержания — а именно это и должно произойти в ИТЭР, правда, на короткие промежутки времени, — это была бы победа над ресурсоемким производством энергии, над добывающей промышленностью, выкачивающей из недр все мыслимые и немыслимые ресурсы — уголь, нефть, газ. Никаких ресурсов, ноль выбросов и целое море энергии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector