Солнце: строение, характеристики, интересные факты, фото, видео
Содержание:
- Солнечные инструменты
- Интересные факты о Солнце
- Важность солнечного излучения
- Ссылки
- Примечания
- Солнечная активность в композиции 3-х снимков
- 150 фраз и цитат о солнце
- Техника трюка «Бросок защёлки»
- Что такое нунчаки
- Перечень наиболее интересных фактов
- Солнечные пятна и гранулы на поверхности светила
- Интересные факты
- Характеристики Солнца
- Справедливо ли называть Солнце звездой?
- Что такое спутник
- Внутреннее строение Солнца
Солнечные инструменты
Основным инструментом астронома, что бы он ни изучал на небе, является телескоп. И хотя принцип действия всех телескопов общий, для каждой области астрономии разработаны свои модификации этого прибора.
Яркость Солнца велика, следовательно, светосила оптической системы солнечного телескопа может быть небольшой. Гораздо интереснее получить как можно больший масштаб изображения. Поэтому у солнечных телескопов очень большие фокусные расстояния. Самый крупный из них имеет фокусное расстояние 90 м и дает изображение Солнца диаметром около 80 см. Вращать подобную конструкцию было бы нелегко. К счастью, это и не нужно. Солнце движется по небосводу лишь в ограниченной его области, внутри полосы шириной около 47°. Поэтому солнечному телескопу не нужна монтировка для наведения в любую точку неба. Его устанавливают неподвижно, а солнечные лучи направляются подвижной системой зеркал — целостатом
Бывают горизонтальные и вертикальные солнечные телескопы. Горизонтальный телескоп построить легче, так как все его детали находятся на горизонтальной оси. С ним и работать легче. Но у него есть один существенный недостаток. Солнце дает много тепла, и воздух внутри телескопа сильно нагревается. Нагретый воздух движется вверх, более холодный — вниз. Эти встречные потоки делают изображение дрожащим и нерезким. Поэтому в последнее время строят в основном вертикальные солнечные телескопы. В них потоки воздуха движутся почти параллельно лучам света и меньше портят изображение.
Лучшие фотографии Солнца, полученные на крупнейших инструментах, позволяют увидеть детали размером около 200 км. Обычные солнечные телескопы предназначены в основном для наблюдения фотосферы. Чтобы наблюдать самые внешние и сильно разреженные, а потому слабо светящиеся слои солнечной атмосферы — солнечную корону, пользуются коронографом. Изобрел его французский астроном Бернард Лио в 1930 г.
В обычных условиях солнечную корону увидеть нельзя, так как свет от нее в 10 тыс. раз слабее света дневного неба вблизи Солнца. Можно воспользоваться моментами полных солнечных затмений, когда диск Солнца закрыт Луной. Но затмения бывают редко и порой в труднодоступных районах земного шара. Да и погода не всегда благоприятна. А продолжительность полной фазы затмения не превышает 7 мин. Коронограф же позволяет наблюдать корону вне затмения.
Чтобы удалить свет от солнечного диска, в фокусе объектива коронографа установлена искусственная «луна». Кроме того, необходимо убрать рассеянный свет в телескопе
Самое важное — это хорошо отполированный объектив без дефектов внутри стекла. Коронографы обычно устанавливают высоко в горах, где воздух прозрачнее и небо темнее
Но и там солнечная корона все же слабее, чем ореол неба вокруг Солнца. Поэтому ее можно наблюдать только в узком диапазоне спектра, в спектральных линиях излучения короны. Для этого используют специальный фильтр или спектрограф.
Интересные факты о Солнце
- Внутри Солнца можно поместить миллион Земель или планет, размером с нашу.
- По форме Солнце образует практически идеальную сферу.
- 8 минут и 20 секунд – именно за такое время солнечный луч добирается к нам из своего источника, при том, что Земля отдалена от Солнца на 150 млн. км.
- Само слово «Солнце» происходит от древнеанглийского слова, означающее «юг» – «South».
- И у нас для вас плохие новости, в будущем Солнце испепелит Землю, а потом и вовсе уничтожит. Произойдет это однако не раньше чем через 2 миллиарда лет.
Источники
- https://KtoNaNovenkogo.ru/voprosy-i-otvety/solnce-chto-ehto-takoe-diametr-stroenie-skolko-let.html
- https://CosmosPlanet.ru/solnechnayasistema/solnce/solntse-eto-zvezda-ili-planeta.html
- https://www.poznavayka.org/astronomiya/solntse-unikalnaya-zvezda/
- https://v-kosmose.com/solntse-interesnyie-faktyi-i-osobennosti/
- https://CosmosPlanet.ru/solnechnayasistema/solnce/solntse.html
- https://AwesomeWorld.ru/nezhivaya-priroda/solntse.html
- http://light-science.ru/kosmos/solnechnaya-sistema/solntse.html
- https://SunPlanets.info/solnechnaya-sistema/chto-takoe-solnechnaya-sistema-stroenie-planety-vozniknovenie-razvitie-otkrytie-i-izuchenie
- http://light-science.ru/kosmos/solnechnaya-sistema/sostav.html
Важность солнечного излучения
Мощная энергия, выделяемая в процессе непрерывно происходящего ядерного синтеза, пронзает космическое пространство. В каком количестве её получают спутники Солнца, зависит от многих причин. В частности, имеют значение размеры планеты и её удалённость от звезды. Земля получает такую энергию в количестве, достаточном для того, чтобы поддерживалась жизнь.
Нужно заметить, что энергетические потоки доходят до поверхности нашей планеты не в полном объёме. Определённая их доля поглощается и отражается атмосферой. Количество поступающей энергии также отличается в разные времена года. Имеет значение и географическая широта местности.
Энергия, посылаемая светилом, незаменима для людей и всех живых организмов. Благодаря свету, достигшему земной поверхности, поддерживаются различные процессы. Примером является фотосинтез у растений. Их листья содержат хлорофилл, улавливающий свет, что даёт Солнце. Эта энергия помогает растениям создавать важные вещества из углекислого газа и воды. Продуктом является кислород, обеспечивающий жизнь на планете. В областях Земли с недостатком света и тепла растения низкорослые и не отличаются большим количеством и разнообразием.
Энергия, которую излучает Солнце, применяют и в искусственных процессах. В результате которых, например, генерируется электрический ток. Люди также используют антисептические свойства ультрафиолетовых лучей для обеззараживания воды, тех или иных предметов. Естественный свет необходим для выработки в организме витамина D и исключения рахита. Но действие ультрафиолета стоит контролировать во избежание обратных, опасных для здоровья эффектов.
Лучистая солнечная энергия оказывает огромное влияние на формирование климата в том или ином регионе планеты. От неё зависят в первые очень температурные условия. Лучи попадают на земную поверхность под разным углом. В областях, где он получается прямой, наблюдается самый жаркий климат. Лучи располагаются перпендикулярно поверхности Земли на экваторе. За счёт того, что они не расходятся в пространстве, на каждый участок попадает максимум энергии. Но в основном лучи ложатся не перпендикулярно, а с наклоном к поверхности. Это обуславливает разницу в климатических условиях
Ссылки
Примечания
- (недоступная ссылка). Дата обращения: 5 мая 2016.
- ↑
- ↑
- Факт ношения маршалом И. Д. Сергеевым при парадной форме Маршальской Звезды подтверждается многочисленными фотографиями.
Солнечная активность в композиции 3-х снимков
Цветное изображение активного солнца. Изображение дано в условном цвете и представляет собой композицию трех снимков в крайней УФ-области, полученных с помощью УФ-телескопа (EIT) на борту космической обсерватории SOHO. Каждому изображению соответствует своя температура в верхних слоях солнечной атмосферы. Красным цветом отмечены области с температурой 2 миллиона градусов, зеленым — 1.5 миллиона, голубым — 1 миллион градусов Цельсия. Комбинированное изображение показывает яркие активные области на солнечном диске. Эти области в видимом свете выглядели бы как темные группы пятен с заметными петлями из плазмы и огромным протуберанцем на правом краю солнечного лимба.
атом гелия. А из каждого грамма водорода, участвующего в реакции, выделяется 6*1011 Дж энергии! На Земле такого количества энергии хватило бы для того, чтобы нагреть от температуры 0 С до точки кипения 1000 м3 воды!
Рассмотрим механизм термоядерной реакции превращения водорода в гелий, которая, по-видимому, наиболее важна для большинства звезд. Называется она протон-протонной, так как начинается с тесного сближения двух ядер атомов водорода — протонов. Протоны заряжены положительно, поэтому взаимно отталкиваются, причем, по закону Кулона, сила этого отталкивания обратно пропорциональна квадрату расстояния и при тесных сближениях должна стремительно возрастать. Однако при очень высоких температуре и давлении теплового движения частиц столь велики, а частицам так тесно, что наиболее быстрые из них все же сближаются друг с другом и оказываются в сфере влияния ядерных сил. В результате может произойти цепочка превращений, которая завершится возникновением нового ядра, состоящего из двух протонов и двух нейтронов, — ядра гелия.
Далеко не каждое столкновение двух протонов приводит к ядерной реакции. В течение миллиардов лет протон может постоянно сталкиваться с другими протонами, так и не дождавшись ядерного превращения. Но если в момент тесного сближения двух протонов произойдет еще и другое маловероятное для ядра событие — распад протона на нейтрон, позитрон и нейтрино (такой процесс называется бета-распадом), то протон с нейтроном объединятся в устойчивое ядро атома тяжелого водорода — дейтерия.
Итак, в итоге последовательных ядерных превращений образуется ядро обычного гелия. Порожденные в ходе реакции позитроны и гамма-кванты передают энергию окружающему газу, а нейтрино совсем уходят из звезды, потому что обладают удивительной способностью проникать через огромные толщи вещества, не задев ни одного атома.
Реакция превращения водорода в гелий ответственна за то, что внутри Солнца сейчас гораздо больше гелия, чем на его поверхности. Естественно, возникает вопрос: что же будет с Солнцем, когда весь водород в его ядре выгорит и превратится в гелий, и как скоро это произойдет? Оказывается, примерно через 5 млрд лет содержание водорода в ядре Солнца настолько уменьшится, что его «горение» начнется в слое вокруг ядра. Это приведет к «раздуванию» солнечной атмосферы, увеличению размеров Солнца, падению температуры на поверхности и повышению ее в ядре. Постепенно Солнце превратится в красный гигант — сравнительно холодную звезду огромного размера с атмосферой, превосходящей границы орбиты Земли. Жизнь Солнца на этом не закончится, оно будет претерпевать еще много изменений, пока в конце концов не станет холодным и плотным газовым шаром, внутри которого уже не происходит никаких термоядерных реакций.
150 фраз и цитат о солнце
Техника трюка «Бросок защёлки»
Что такое нунчаки
Перечень наиболее интересных фактов
Мы живем на планете и думаем, что Земля равноправный член Солнечной системы. Реальность такова, что масса центральной звезды составляет 99,8% от массы Солнечной системы. И большая часть, от оставшихся 0,2% приходит на Юпитер. Таким образом, масса Земли составляет сотые доли массы Солнечной системы.
Солнце на 74% состоит из водорода, и на 24% гелия. Оставшиеся 2% включает в себя небольшое количество железа, никеля, кислорода. Иными словами, Солнечная система в основном состоит из водорода.
Мы знаем, что существуют удивительно большие и яркие звезды, например Сириус или Бетельгейзе. Но они находятся невероятно далеко. Наше собственное светило является относительно яркой звездой. Если бы вы могли взять 50 ближайших звезд в радиусе 17 световых лет от Земли, то она будет 4-й по яркости звездой.
Его диаметр в 109 раз больше Земного, внутри него могли бы поместиться 1300 тысяч Земель. Но существуют гораздо большие звезды, чей диаметр почти достиг бы орбиты Сатурна, если бы звезда была помещена внутрь Солнечной системы.
Астрономы считают, что наша звезда образовалось около 4590 миллионов лет назад. Примерно через 5 миллиардов лет оно войдет в стадию красного гиганта, и раздуется, затем, сбросив внешние слои, превратится в белый карлик.
Хотя наше светило и выглядит как горящий огненный шар, но на самом деле, имеет внутреннюю структуру поделенную на слои. Видимая поверхность, называется фотосфера, она нагрета до температуры около 6000 градусов по Кельвину. Под ней находится зона конвекции, где тепло медленно движется от центра к поверхности, а охлажденное звездное вещество падает вниз. Эта область начинается на расстоянии 70% радиуса. Под зоной конвекции находится радиационный пояс. В этой зоне, тепло передается через излучение. Ядро простирается от центра на расстояние в 0,2 солнечных радиусов. Это место, где температура достигает 13,6 млн градусов Кельвина, и молекулы водорода сливаются в гелий.
Солнце на самом деле медленно нагревается. Оно становится на 10% ярче каждый миллиард лет. В течение всего миллиарда лет, жар будет настолько сильным, что жидкая вода не сможет существовать на поверхности Земли. Жизнь на Земле, исчезнет навсегда. Бактерии смогут жить под землей, но поверхность планеты будет выжженной и необитаемой. Через 7 миллиардов лет оно превратится в красного гиганта, и прежде чем оно расширится, Солнце притянет к себе Землю и уничтожает всю планету.
В отличие от планет, Солнце это огромная сфера из водорода. Из-за этого, различные части вращаются с разной скоростью. Вы можете видеть, насколько быстро вращается поверхность, путем отслеживания движения пятен по поверхности. Вращение на экваторе занимает 25 дней, в то время как на полюсах, полный оборот может занять 36 дней.
Поверхность имеет температуру 6000 градусов Кельвина. Но это гораздо меньше, чем температура атмосферы звезды. Над поверхностью имеется область атмосферы, — называемая хромосферой, ее температура может достигать 100,000 К. Еще более далекие области, называемые короной, достигают температуры 1 млн. К.
Самый известный космический корабль, посланный для наблюдений, запущен в декабре 1995 года и называется SOHO. SOHO постоянно наблюдает за нашим светилом. В 2006 году были запущены два аппарата миссии STEREO. Эти два корабля были разработаны, чтобы наблюдать за активностью с двух разных точек зрения, это дает трехмерные модели нашей звезды, и позволяет астрономам более точно прогнозировать космическую погоду.
Солнечные пятна и гранулы на поверхности светила
взрыве водородной бомбы. Есть надежда, что в недалеком будущем человек сможет научиться использовать ее и в мирных целях (В 2005 году новостные ленты передавали о начале строительства первого международного термоядерного реактора во Франции).
Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звездах, тогда как лучистый и конвективный переносы очень важны.
Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порции света — квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед. Но когда они в конце концов выберутся наружу, это будут уже совсем другие кванты. Что же с ними произошло?
В центре Солнца рождаются гамма-кванты. Их энергия в миллионы раз больше, чем энергия квантов видимого света, а длина волны очень мала. По дороге кванты претерпевают удивительные превращения. Отдельный квант сначала поглощается каким-нибудь атомом, но тут же снова переизлучается; чаще всего при этом возникает не один прежний квант, а два или несколько. По закону сохранения энергии их общая энергия сохраняется, а потому энергия каждого из них уменьшается. Так возникают кванты все меньших и меньших энергий. Мощные гамма-кванты как бы дробятся на менее энергичные кванты — сначала рентгеновских, потом ультрафиолетовых и наконец видимых и инфракрасных лучей. В итоге наибольшее количество энергии Солнце излучает в видимом свете, и не случайно наши глаза чувствительны к нему.
Как мы уже говорили, кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя. На своем пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передается уже не излучением, а конвекцией.
Интересные факты
Характеристики Солнца
Согласно астрономической классификации небесных объектов Солнце относится к звезде G-класса, оно ярче 85% других звезд галактики, многие из которых являются красными карликами. Диаметр Солнца составляет 1,391 млн км, масса – 1.988 х 1030 кг. Если сравнить Солнце с Землей, то оно крупнее нашей планеты в 109 раз и в 333000 раз массивнее.
Сравнительные размеры Солнца и планет.
Хотя Солнце кажется нам желтым, настоящий его цвет – белый. Видимость желтого цвета создается атмосферой светила.
Температура Солнца составляет 5778 градусов по Кельвину в верхних слоях, но по мере приближения к ядру она возрастает еще больше и ядра Солнца неимоверно жарко – 15.7 млн. градусов по Кельвину
Также Солнце обладает сильным магнетизмом, на его поверхности имеется северный и южный магнитные полюса, и магнитные линии, которые с периодичностью в 11 лет перенастраиваются. В момент таких перестроек происходят интенсивные солнечные выбросы. Также магнитное поле Солнца оказывает влияние на магнитное поле Земли.
Справедливо ли называть Солнце звездой?
Так что такое Солнце – это звезда или планета? Конечно же, это звезда. Об этом свидетельствует несколько важнейших характеристик!
- Оно не способно отражать свет, т. к. само его излучает и «даёт» окружающему пространству огромное количество энергетического потока.
- Его поверхность нагревается до внушительной температурной отметки, составляющей 5 500 – 6 000 градусов. Что касается ядерной части объекта, в ней дела обстоят ещё «горячее». Температура может составлять 15 млн градусов по Цельсию.
- Вокруг светила вращаются планеты в количестве 8 штук. Каждая из них имеет свою орбиту. Вместе все эти элементы образуют систему. Само по себе Солнце не имеет ни конкретной орбиты, ни спутников, что как раз характерно для звезды.
- Порядка 73% массы Солнца и около 92% его объёма представлено водородом – лёгким химическим элементов. На 25% от веса и 7% от объёма приходится гелий. И только 1% в составе объекта занимают другие элементы. Преимущественно это сера, хром, азот, железо и т. д.
- На поверхности нашей главной звезды постоянно происходят какие-то явления и реакции. Всё это провоцирует серьёзные энергетические выбросы. Именно данное явление позволяет наслаждаться дневным светом, а также получать от солнечных лучей большое количество тепла.
- Если принять Солнечную систему в качестве одного целого и определить доли всех шарообразных тел по их массам, на Солнце придётся порядка 99,86%. Отсюда следует простой и логичный вывод: наша звезда в 10 и даже в 100 раз превосходит в размерах многие планеты.
Таким образом, рассматривая вопрос, что такое Солнце – планета или звезда – можно незамедлительно дать ответ. Однозначно – это звезда. Она является жёлтым карликом в соответствии с общепринятой астрономической классификацией. Возраст светила в настоящее время превышает отметку в 5 млрд лет. По уровню яркости оно находится на 4-м месте среди всех изученных объектов такого типа. Теперь нет сомнений, к какой группе относится наш источник энергии!
Что такое спутник
Тайна ночного светила будоражила воображение людей с древнейших времен. Но только в самом начале XVII в. появилась возможность впервые подробно его рассмотреть. Сделать это позволили подзорная труба И. Липперсхея, телескоп Г. Галилея. Сегодня Луна — самый изученный космический объект. Тем поразительнее, что до сих пор есть люди, которые полагают, будто он существует столько же времени, сколько и Земля. При этом астрономы выдвигают разные теории его формирования. Согласно их версиям, Луна — это:
- Небесная родственница Земли, и обе они сформировались из единого зародыша (протопланеты).
- Результат столкновения нашей планеты с другим космическим телом.
- Спутник Земли.
Спутники планет. Credit: econet.ru
Версия столкновения достаточно реалистична. Предположительно более 4 млрд лет назад Земля находилась в расплавленном состоянии, поскольку была еще протопланетой. К ней приблизилась Тейя, аналогичное небесное тело, и произошла космическая катастрофа. В результате столкновения по касательной линии Земля поглотила часть массы Тейи. Но ее ядро, а также часть тела нашей протопланеты по инерции вылетели на околоземную орбиту. Из этой материи и сформировалась Луна, которой астрономы присвоили статус спутника Земли.
В пользу этой теории свидетельствует тот факт, что в составе грунтов сателлита содержатся многие минералы, которые есть и в земных почвах. Поскольку скорости вращения ночного светила вокруг нашей планеты и собственной оси одинаковы, оно всегда обращено к нам одной стороной. Это особенность всех спутников, находящихся вблизи своих планет. Столкновение небесных тел привело и к тому, что скорость движения Земли увеличилась, а смещение оси вращения вызвало смену сезонов.
Внутреннее строение Солнца
Солнце — это огромный светящийся газовый шар, внутри которого протекают сложные процессы. Так же, как и другие звезды, Солнце светит благодаря идущим в его недрах термоядерным реакциям.
Источник энергии находится в центральной части светила — ядре. Плотность солнечного вещества растет к центру вместе с ростом давления и температуры, и в ядре звезды температура достигает 15 млн кельвинов. При таких параметрах среды начинает происходить реакция синтеза атомных ядер, когда ядра атомов легких элементов сливаются в ядро атома более тяжелого элемента, а масса нового ядра оказывается меньше, чем суммарная масса тех ядер, из которых оно образовалось. Остаток массы превращается в энергию, которую уносят частицы, освободившиеся в ходе реакции. Эта энергия почти полностью переходит в тепло.
Строение Солнца:
1. Ядро
2. Зона лучистого переноса
3. Конвективная зона
4. Фотосфера
5. Хромосфера
6. Корона
7. Солнечные пятна
8. Гранулы
9. Протуберанец
Основное вещество, составляющее Солнце, — водород, он и служит главным «топливом». На долю водорода приходится около 71% всей массы светила, почти 27% принадлежит гелию, а остальные 2% — более тяжелым элементам, таким как углерод, азот, кислород и металлы. В недрах Солнца из четырех атомов водорода образуется один атом гелия. На каждый грамм водорода, участвующего в реакции, приходится 6 ⋅ 1011 Дж выделяющейся энергии. Такого количества энергии достаточно, чтобы нагреть от температуры 0°С до точки кипения 1000 м3 воды.
Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звездах, тогда как лучистый и конвективный переносы очень важны.
Сразу вокруг ядра начинается зона лучистого переноса энергии, в которой энергия распространяется через поглощение и излучение веществом порций света — квантов.
Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот очень медленный. Чтобы квантам добраться от центра Солнца до его видимой зоны — фотосферы, необходимы многие сотни тысяч лет, так как, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед. В процессе переизлучения кванты меняют и свою природу.
Протонно-нейтронная ядерная реакция
На своем пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передается уже не излучением, а конвекцией. Конвекция может происходить в жидких и газообразных средах. На Солнце в области конвекции огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ опускается вниз. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца — фотосферы, где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда все же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.