Работа двигателя ракеты: фото, характеристики, видео

Рекомендации

Явление отдачи

Но научные поиски и разработки на этом не прекращались. Как всегда, на помощь пришла природа, которая, в большинстве случаев и наталкивает изобретателей на удивительные открытия.

Наблюдения за морскими жителями, такими как осьминоги, кальмары и каракатицы, привели к неожиданным результатам. Манера движения этих морских обитателей, была схожа с кратковременным толчком. Будто тело отталкивается отчего – то и продвигается вперед.

Эти наблюдения были чем-то схожи с замечаниями Гюегенса про выстрел и пушку, которые мы упоминали выше.

Таким образом, в физики появилось понятие «явление отдачи». В ходе дальнейших научных исследований было выяснено, что именно благодаря явлению отдачи происходит все движение на планете Земля: автомобиль отталкивается от земли, корабль – от воды и т.д.

Движение тел происходит благодаря передаче импульса от одного объекта другому. Для объяснения явления приведем простейший пример: вы решили толкнуть своего товарища в плечо, приложили определенную силу, в результате которой, он сдвинулся с места, но и вы испытали силу, отталкивающую вас в противоположную сторону.

Конечно, расстояние, на которое сдвинетесь вы и ваш друг, будет зависеть от ряда факторов: сколько вы весите, как сильно вы его толкнули.

«Ни у одной страны нет подобных разработок»

По мнению академика Российской академии космонавтики Александра Железнякова, новый двигатель, как и его предшественник РД-171М, будет успешно конкурировать с зарубежными аналогами.   

По его словам, продвижение этого двигателя на международном рынке связано с вопросами геополитики.

«Кроме Китая, вряд ли кто-то заинтересуется, поскольку это зависит от геополитической обстановки», — пояснил он.

Схожую точку зрения выразил и военный эксперт Михаил Тимошенко. 

«Этот двигатель сможет конкурировать с иностранными разработками. США вряд ли будут заинтересованы в его покупке, потому что у них есть двигатель для тяжёлых ракет. Но интерес могут проявить Евросоюз и Китай, если, конечно, они захотят выводить на орбиту что-то тяжёлое», — сказал он RT.

  • Ракета-носитель среднего класса «Союз-5» («Иртыш»)

В свою очередь, Моисеев заявил, что двигатель вряд ли пойдёт на экспорт, поскольку такие аппараты создаются под конкретные ракеты. Пока за рубежом нет ракет, совместимых с РД-171МВ.

«Для его покупки предполагаемый покупатель должен иметь соответствующую ракету. Им заинтересуются тогда, когда кто-то начнёт разрабатывать ракету, под которую он подойдёт, но пока таких ракет не разрабатывают и в планах ни у кого нет», — сказал эксперт. 

Как устроены ракетные двигатели (3 минуты чтения и все понятно)

Преимущества и недостатки турбонаддува

Разновидности реактивных двигателей

Существует несколько реактивных двигателей отличающихся по своему принципу работы и подобию. Так, принцип работы ядерного двигателя, в основу которого положена синтезная реакция разложения химического элемента, к примеру — урана.

Данный элемент помещается в реактор. Туда же подводится при помощи турбонасосов рабочее вещество. Распылительными форсунками производится его рассеивание по рабочей камере, в которой происходит контакт с химическим ураном. В результате выделяется энергия большой силы, которая и является движущей.

Не смотря на всю конфиденциальность и секретность информации о ядерном вооружении стран во всем мире, самую большую опасность представляет крылатая ракета, работающая на ядерном топливе.

Системы противовоздушной обороны настолько совершенны, что обмануть простыми полетами и маневрами уже не так-то просто. В этом случае и выступает на передний план ядерный двигатель. Увы, принцип работы ядерного двигателя для крылатой ракеты недоступен и, вряд ли, когда-нибудь будет раскрыт для общественности.

Источник

Галерея

Сфера применения

Использование ПВРД на пилотируемых самолетах нецелесообразно, ведь для их запуска нужны дополнительные двигатели. Намного проще сразу установить, например, ТРД. Именно поэтому их применение сводится к установке на крылатые ракеты, летающие мишени и непилотируемые самолеты, летающие со скоростью в пределах от 2 до 5М. В основном это «одноразовые» двигатели, что вполне логично, учитывая их невысокую стоимость и простую конструкцию. Запуск аппаратов с ПВРД осуществляется за счет их разгона до рабочей скорости с помощью самолетов-носителей или ракетных ускорителей.

Гиперзвуковые ПВРД планируется использовать на космических аппаратах, но пока это только теория.

Несмотря на то, что использование ПВРД в настоящее время ограничено, постоянно ведутся работы по улучшению их рабочих характеристик и созданию новых моделей.

Последняя разработка является двигатель Sabre частной фирмы Reaction Engines.

Суть данного двигателя в том, что традиционные двигатели, которые сегодня применяются в авиации, для полета на гипер скоростях требуют спецрезервуаров с жидким кислородом, если самолет развивает в полете скорость более 3000 км/ч. Обыкновенный воздух на таких скоростях нагревается до очень высоких температур, порядка 1000 градусов по Цельсию, что резко понижает термическое КПД. Особенность двигателя Sabre в том, что позволяет применять атмосферный воздух вместо жидкого кислорода. Когда воздух проходит сквозь двигатель, он сжимается и разогревается, в это время он попадает в холодильник, который оснащен целой системой трубок, которые наполняются гелием эти трубки, гелий охлаждает воздух до необходимой температуры. У двигателя Sabre есть одна особенность. Он в состоянии работать в 2-х режимах: как реактивный двигатель и как ракетный двигатель. Устанавливаться он будет на самолете Skylon. Данная аппарат сможет разогнаться в атмосфере в 5 раз быстрее скорости звука и в 25 раз в открытом космическом пространстве.

Skylon готовиться как космический самолет, способный выводить спутники на низкую орбиту. При этом это будет очень выгодная технология. По словам Алана Бонда, являющегося основателем компании, суммы, которые требуются для запуска спутников и других похожих миссий, могут уменьшиться сразу на 95% в том случае, если будет налажено коммерческое производство двигателей Sabre.

Двухконтурный РД

Эти агрегаты имеют массу преимуществ перед турбореактивными (меньший расход топлива при той же мощности).

Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй – к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления.

В первом контуре двигателя воздух сжимается и подогревается, а затем подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины.

Затем газы проходят через турбину низкого давления. Она приводит в действие вентилятор, и газы попадают наружу, создавая тягу.

Месть детей за гибель отца

Рисунок боевого корабля викингов

По легенде Рагнар перед смертью сказал: «Вот мои поросята хрюкнут, когда узнают про смерть старого кабана». Достоверность данных слов остается под сомнением, однако вторжение сыновей Лодброка и стало называться Великой языческой (датской) армией.

В течение данного похода многие скандинавы прибывали и на поселение. Викинги имели опорные пункты и получали подкрепления, что позволяло развивать наступление. Лишь в 878 Альфред Уэссексий, получивший прозвище «Великий», сумел одержать решительную победу при Этандуне и на ее основе заключить Уэдморский договор. Нашествие викингов в Англии прекратилось, однако их набеги возобновились в материковой Европе.

Автор статьи:
Парпурин Вадим

Принцип работы турбовентиляторного двигателя

Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.

При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.

Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.

Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.

Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.

Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.

Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.

Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.

Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.

Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.

Источник

Как действует реактивная сила?

Чтобы понять принцип работы реактивного двигателя, нужно понимать, как действует эта сила.

Итак, представим выстрел из любого огнестрельного оружия. Это наглядный пример действия реактивной силы. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.

А теперь представим процесс зажигания горючей смеси: он проходит постепенно и непрерывно. Именно так выглядит принцип работы прямоточного реактивного двигателя. Подобным образом работает ракета с твердотопливным реактивным двигателем – это наиболее простая из его вариаций. С ней знакомы даже начинающие ракетомоделисты.

В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели, принцип работы которых был уже более совершенен, требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах, запускающих ракеты, выводящие шаттлы на орбиту, сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.

Коды ракетных двигателей

Обозначение конкретного мотора выглядит как С6-3 . В этом примере буква ( C ) представляет собой общий импульсный диапазон двигателя, цифра ( 6 ) перед чертой обозначает среднюю тягу в ньютонах , а цифра ( 3 ) после черты обозначает задержку в секундах от метательного заряда. выгорание до срабатывания эжекционного заряда ( состав газогенератора , обычно дымный порох , предназначенный для развертывания системы восстановления). Двигатель C6-3 будет иметь импульс от 5,01 до 10 Н · с, вырабатывать среднюю тягу 6 Н и запускать эжекционный заряд через 3 секунды после перегорания.

В 1982 году производители двигателей предприняли попытку уточнить код двигателя, записав перед кодом полный импульс в ньютон-секундах. Это позволило рассчитать продолжительность горения по предоставленным числам. Кроме того, за кодом двигателя следовало буквенное обозначение, обозначающее тип топлива. Обозначения пороха зависят от производителя. Этот стандарт все еще не принят полностью, некоторые производители применяют его части или всю дополнительную номенклатуру.

Твердотопливные ракеты: конфигурации

Читая описание для современных твердотопливных ракет, часто можно найти вот такое:

Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:

Твердотопливные двигатели обладают тремя важными преимуществами:

  • простота
  • низкая стоимость
  • безопасность

Но есть и два недостатка:

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Конфигурации твердотопливных ракет

В описаниях твердотопливных ракет можно часто встретить следующее:

«Топливо для ракет состоит из перхлората аммония (окислитель, по весу – 69,6%), полимера (связующая смесь – 12,04%), алюминия (16%), оксида железа (катализатор – 0,4%) и эпоксидный отверждащий агент (1,96%). Перфорация сделана в форме 11-конечной звезды, находящейся в переднем сегменте двигателя и в форме дважды усеченного конуса в каждом из остальных сегментов, в т.ч. и конечном. Благодаря такой конфигурации при розжиге обеспечивается высокая тяга, а затем, через 50 с после старта, она уменьшается приблизительно на треть, предотвращая перенапряжение аппарата в период максимального динамического давления.

В этом плане объясняется не просто состав топлива, но и форма канала, который был пробуренный в центре топлива. Как выглядит перфорация в виде 11-конечной звезды, можете увидеть на фото:

Весь смысл в том, чтобы увеличить площадь поверхности канала, и соответственно, увеличить площадь выгорания, в результате чего увеличиться тяга. По мере сгорания топлива, форма меняется к кругу. Такая форма в случае с космическим шаттлом дает серьезную изначальную тягу, которая в средине полета становится немного послабее.

Твердотопливные двигатели имеют 3 важные преимущества:

  • низкая стоимость;
  • простота;
  • безопасность.

Хотя есть и 2 недостатка:

двигатель нельзя отключать или запускать повторно после зажигания;

невозможность контроля тяги.

Недостатки означают, что тип твердотопливных ракет подходит только для непродолжительных задач или систем ускорения. Если вам нужно управлять двигателем, то придется прибегнуть к системе жидкого топлива.

Моторный импульс по классам

  Класс (Базовый 26) Общий импульс (Н · с) Общий импульс (фунт-сила · с) Аэрокосмический аппарат или ракета (ы) Требования США
Микро 0–0,3125 0–0,07
1 / 4A 0,3126–0,625 0,071–0,14
1 / 2А 0,626–1,25 0,141–0,28
А 1,26–2,50 0,281–0,56
B 2,51–5,00 0,561–1,12
C 5.01–10.0 1,121–2,25
D 10.01–20.0 2,251–4,5
E 20.01–40.0 4,51–8,99
F 40.01–80.0 8,991–18,0
грамм 80.01–160 18.01–36.0 Самая большая модель ракетного двигателя по версии TRA и NAR.
ЧАС 160.01–320 36.01–71.9 Для покупки требуется сертификат уровня 1, который можно получить в Триполи или НАР . Топливо менее 125 г освобождено от уплаты Федерального управления гражданской авиации.
я 320.01–640 71,9–144
Класс в килоньютон (кН) Уровень 2 Сертификат, необходимый для покупки, доступен в Триполи или НАР для полета.
J 640,01–1 280 144.01–288 .
K 1 280,01–2 560 288.01–576
L 2,560,01–5,120 576.01–1 151
M 5 120,01–10 240 1,151,01–2,302 Для покупки требуется сертификат уровня 3, который можно получить в Триполи или НАР .
N 10 240,01–20 480 2 302,01–4 604
О 20 480,01–40 960 4 604,01–9 208
п 40 960–81 920 9 210–18 400 Требуется отказ от требований FAA / AST Class 3.
Q 81 920–163 840 18 400–36 800
р 163 840–327 680 36 800–73 700 Путешественник IV USCRPL
S 327 680–655 360 73 700–147 000 WAC капрал CSXT GoFast DARE’s Stratos III Самый большой мотор, используемый любителями.
Класс меганьютона (MN) Следующие ниже двигатели классифицируют профессиональные силовые установки с использованием любительских кодов двигателей, которые не используются в промышленности.
Т 655 кН – 1,3 МН 147 000–295 000 200 000 фунт-сила-сила — это предел для определения FAA «любительской» ракеты.
U 1,3-2,6 МН 295 000–589 000 Твердотопливные ускорители Atlas V Apollo запускают спасательную ракету
V 2,6-5,2 МН 589 000–1 180 000 Гибридная ракета SSC ​​Bloodhound
W 5.2-10.MN 1 180 000–2 360 000 SS-520 Самая маленькая орбитальная ракета
Икс 10,5–21 МН 2 360 000–4 710 000 Лямбда 4S
Y 21–42 МН 4 710 000–9 4 30 000 Авангард ГЭМ-40 СРБ Электрон
Z 42–84 МН 9 430 000–18 900 000 Черная стрела Меркурий-Редстоун Пегас-XL
AA 74-168МН 18 900 000–37 700 000 Сокол 1 Минотавр I VLS-1
AB 168–336МН 37 700 000–75 400 000 МВ Минотавр-Ц Стрела
AC 336–671MN 75 400 000–151 000 000 Ariane 3 Titan II Днепр
Гиганьютон (GN) класс
ОБЪЯВЛЕНИЕ 671MN – 1.34GN 151 000 000–302 000 000 Восток Дельта II Сокол 9 v1.0
AE 1,34–2,68GN 302 000 000–603 000 000 Falcon 9 v1.1 Falcon 9 Полная тяга Delta IV Heavy
AF 2 680 000 000–5 370 000 000 603 000 000–1 2 10 000 000 Falcon Heavy New Glenn
AG 5,37 * 10 9 –10,7 * 10 9 1,21 * 10 9 –2,41 * 10 9 Система запуска космического корабля » Сатурн V»
AH 10,7 * 10 9 –21,4 * 10 9 2,41 * 10 9 –4,82 * 10 9 Звездолет Ареса V
AI 21,4 * 10 9 –42,8 * 10 9 4,82 * 10 9 –9,64 * 10 9
AJ 42,8 * 10 9 –85,6 * 10 9 9,64 * 10 9 –19,3 * 10 9 Морской дракон

Совместимое снаряжение

Ссылки

Электрические ракетные двигатели

В электрических ракетных двигателях (ЭРД) в качестве источника энергии для создания тяги используется электрическая энергия. Удельный импульс электрических ракетных двигателей может достигать 10—210 км/с.

В зависимости от способа преобразования электрической энергии в кинетическую энергию реактивной струи, различают электротермические ракетные двигатели, электростатические (ионные) ракетные двигатели и электромагнитные ракетные двигатели.

Высокие значения удельного импульса ЭРД позволяет ему расходовать (в сравнении с химическими двигателями) малое количество рабочего тела на единицу тяги, но при этом возникает проблема большого количества электроэнергии, необходимой для создания тяги. Мощность, необходимая для создания единицы тяги ракетного двигателя (без учёта потерь), определяется формулой:

P=I2{\displaystyle P={\frac {I}{2}}}

Здесь P{\displaystyle P} — удельная мощность (ватт/ньютон тяги); I{\displaystyle I} — удельный импульс (м/c).
Таким образом, чем выше удельный импульс, тем меньше требуется вещества, и больше — энергии, для создания единицы тяги. Поскольку мощность источников электроэнергии на космических аппаратах весьма ограничена, это ограничивает и тягу, которую могут развить ЭРД. Самым приемлемым для ЭРД источником электроэнергии в космосе в настоящее время являются солнечные батареи, не потребляющие топлива, и обладающие достаточно высокой удельной мощностью (по сравнению с другими источниками электроэнергии).
Низкая тяга (не превышающая единиц ньютонов для самых мощных из современных электрических ракетных двигателей) и неработоспособность в атмосфере, на высотах менее 100 км сужают область применения электрических ракетных двигателей.

Зачем нужен ядерный двигатель для космического корабля

Космическую эру человечество открыло в начале 1960-х г.г., и хотя с тех пор прошло уже 60 лет, несмотря на все успехи в деле изучения ближнего космоса, космический полет чуть дальше орбиты Луны воспринимается как задача чудовищной сложности. Почему так происходит и где те самые “караваны ракет” летящие к далеким мирам?

Техника подвела! Дело в том, что фактически сейчас мы используем такие же точно двигатели, как и на заре космонавтики. Нет, конечно с технической точки зрения современные двигатели мощнее, экономичнее и лучше старых, но существуют у них ограничения, которые до сих пор мы обойти не можем.

Пока у человечества не будет новых мощных двигателей, о далеких планетах остается только мечтать

В чем же дело? Вот в чем: жидкостные ракетные двигатели открыли человеку дорогу в космос – на околоземные орбиты. Но дальше двигаться на этой энергетической базе просто не имеет смысла: скорость истечения реактивной струи в них не превышает 4,5 км/с, а для межпланетных полетов нужны десятки километров в секунду.

Иными словами, мы имеем дело с классическим технологическим пределом, преодолеть который нельзя. Если, конечно, не создать принципиально иной двигатель для космических перелетов, например – ядерный!

Жидкотопливные ракеты

В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.

Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.

  • Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
  • Бензин и жидкий кислород (первые ракеты Годдарда).
  • Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
  • Спирт и жидкий кислород (использовались в немецких ракетах V2).
  • Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).

Электрические ракетные двигатели

В электрических ракетных двигателях (ЭРД) в качестве источника энергии для создания тяги используется электрическая энергия. Удельный импульс электрических ракетных двигателей может достигать 10—210 км/с.

В зависимости от способа преобразования электрической энергии в кинетическую энергию реактивной струи, различают электротермические ракетные двигатели, электростатические (ионные) ракетные двигатели и электромагнитные ракетные двигатели.

Высокие значения удельного импульса ЭРД позволяет ему расходовать (в сравнении с химическими двигателями) малое количество рабочего тела на единицу тяги, но при этом возникает проблема большого количества электроэнергии, необходимой для создания тяги. Мощность, необходимая для создания единицы тяги ракетного двигателя (без учёта потерь), определяется формулой:

P=I2{\displaystyle P={\frac {I}{2}}}

Здесь P{\displaystyle P} — удельная мощность (ватт/ньютон тяги); I{\displaystyle I} — удельный импульс (м/c).
Таким образом, чем выше удельный импульс, тем меньше требуется вещества, и больше — энергии, для создания единицы тяги. Поскольку мощность источников электроэнергии на космических аппаратах весьма ограничена, это ограничивает и тягу, которую могут развить ЭРД. Самым приемлемым для ЭРД источником электроэнергии в космосе в настоящее время являются солнечные батареи, не потребляющие топлива, и обладающие достаточно высокой удельной мощностью (по сравнению с другими источниками электроэнергии).
Низкая тяга (не превышающая единиц ньютонов для самых мощных из современных электрических ракетных двигателей) и неработоспособность в атмосфере, на высотах менее 100 км сужают область применения электрических ракетных двигателей.

Разработки ядерных ракетных двигателей в СССР

В СССР проектирование первых ядерных ракетных двигателей велось во второй половине 1950-х годов. Этими работами занимались КБ главных конструкторов А.М. Люльки, С.А. Лавочкина, В.М. Мясищева, М.М. Бондарюка, В.П. Глушко совместно с рядом научно-исследовательских институтов – НИИТП, ЦИАМ, ИАЭ, ВНИИНМ.

Уже летом 1959 года сотрудники НИИТП В.М. Иевлев и Ю.А. Трескин доложили о постановке эксперимента на реакторе ИГР, первый запуск которого состоялся в 1961-м. Конструкции совершенствовались, и в 1975-1989 гг. на реакторе ИВГ-1 была выполнена отработка тепловыделяющих сборок на ресурс в форсированном режиме при температурах до 3100 К и тепловых потоках 20 кВт/см3 (на порядок выше, чем в США).

А на стендовом реакторе ядерного двигателя минимальной размерности ИРГИТ проводились запуски при мощности до 60 МВт и температуре 2650 К. В отличие от американских российские ученые использовали более экономичные и эффективные испытания отдельных тепловыделяющих элементов в исследовательских реакторах.

Все это в 1970-1980-е годы позволило в КБ “Салют”, КБ химавтоматики, ИАЭ, НИКИЭТ и НПО “Луч” (ПНИТИ) разрабатывать различные проекты космических ядерных ракетных двигателей и ядерных энергодвигательных установок.

В КБ химавтоматики при научном руководстве НИИТП (за элементы реактора отвечали ФЭИ, ИАЭ, НИКИЭТ, НИИТВЭЛ, НПО “Луч”, МАИ) создавались ЯРД РД 0411 и ядерный двигатель минимальной размерности РД 0410 тягой 40 и 3,6 т соответственно. В результате были изготовлены реактор, “холодный” двигатель и стендовый прототип для проведения испытаний на газообразном водороде.

В отличие от американского, с удельным импульсом не больше 8250 м/с, советский ЯРД за счет более жаростойких и совершенных по конструкции тепловыделяющих элементов и высокой температуры в активной зоне имел этот показатель равным 9100 м/с.

Советский вариант ядерного двигателя (РД-0410) для космического корабля оказался эффективнее, чем американский. Но и у нас революции не случилось

Стендовая база для испытаний ЯРД объединенной экспедиции НПО “Луч” размещалась в 50 км юго-западнее г. Семипалатинск-21. Она начала работать в 1962-м. В 1971-1978 гг. на полигоне испытывались натурные тепловыделяющие элементы прототипов ЯРД. При этом отработанный газ поступал в систему закрытого выброса. Стендовый комплекс для полноразмерных испытаний ядерных двигателей “Байкал-1” находится в 65 км к югу от г. Семипалатинск-21.

С 1970 по 1988 год проведено около 30 “горячих” пусков реакторов. При этом мощность не превышала 230 МВт при расходе водорода до 16,5 кг/с и его температуре на выходе из реактора 3100 К. Все запуски прошли успешно и безаварийно.

Однако, не смотря на несколько лучший результат,  чем в США, отечественные разработки ядерного ракетного двигателя на этом также были остановлены, а оборудование законсервировано. В России и в США исследователи в общем-то пришли к одному выводу – идея рабочая, но в текущих реалиях плохо реализуемая.

По большому счету ядерный ракетный двигатель опередил время – более совершенная база, более продвинутые технологи в будущем позволят вернутся к этой идеи с новыми силами. Пока же остается только мечтать о полетах к далеким планетам, также, как и полвека назад.

Плюсы ядерного реактивного двигателя:

  • Значительно эффективнее жидкостного реактивного двигателя в некоторых диапазонах работы
  • Значительно более компактный за счет отсутствия большого объема топлива
  • Значительно более “долгоиграющий”, опять же за счет преимуществ ядерного топлива

Минусы ядерного реактивного двигателя:

  • Скорость истечения реактивной струи, хотя и выше на порядок, чем у ЖРД, все равно слишком мала для серьезного “покорения” космоса
  • Требует серьезной радиационной защиты
  • В случае аварии происходит ядерная катастрофа. По причине сильной остаточной радиации исключен возврат или сброс ядерного ракетного двигателя на Землю.

Сравнение принципов работы жидкостного и ядерного реактивных двигателей

Таможенные ограничения

Устройство

Устроен типичный реактивный двигатель следующим образом. Основные его узлы — это:

— камера для сгорания;

Рассмотрим данные элементы более подробно. Компрессор представляет собой несколько турбин. Их задача – всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. Часть такого сжатого воздуха подается в камеру сгорания. В ней воздух смешивается с топливом и происходит воспламенение. Этот процесс еще больше увеличивает тепловую энергию.

Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует еще через одну турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему. Температура, уже достаточно высокая, продолжает расти за счет эффекта дросселирования. Затем воздух выходит окончательно.

Твердотопливные ракеты: конфигурации

Читая описание для современных твердотопливных ракет, часто можно найти вот такое:

Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:

Твердотопливные двигатели обладают тремя важными преимуществами:

  • простота
  • низкая стоимость
  • безопасность

Но есть и два недостатка:

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector