Звёздная эволюция

Середина жизненного цикла звезды[править | править код]

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь, естественно, идёт не о физическом перемещении звезды — только о её положении на указанной диаграмме, зависящем от параметров звезды. Фактически, перемещение звезды по диаграмме отвечает лишь изменению параметров звезды.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Файл:Sagittarius Star Cloud.jpg

Звёзды в созвездии Стрельца (вид с Земли на центр галактики Млечный Путь)

Слайды и текст этой презентации

Слайд 1

Текст слайда:

Эволюция звезд

ЭВОЛЮЦИЯ ЗВЕЗД

Слайд 2

Текст слайда:

Звезды

Вселенная состоит на 98% из звезд. Они же являются основным элементом галактики.

«Звезды – это огромные шары из гелия и водорода, а также других газов. Гравитация тянет их внутрь, а давление раскаленного газа выталкивает их наружу, создавая равновесие. Энергия звезды содержится в ее ядре, где ежесекундно гелий взаимодействует с водородом».

Слайд 3

Текст слайда:

Жизнь звезд

Жизненный путь звезд представляет собой законченный цикл – рождение, рост, период относительно спокойной активности, агония, смерть, и напоминает жизненный путь отдельного организма.

Астрономы не в состоянии проследит жизнь одной звезды от начала и до конца. Даже самые короткоживущие звёзды существуют миллионы лет – дольше жизни не только одного человека, но и всего человечества. Однако учёные могут наблюдать много звёзд, находящихся на самых разных стадиях своего развития, — только что родившиеся и умирающие. По многочисленным звездным портретам они стараются восстановить эволюционный путь каждой звезды и написать её биографию.

Слайд 4

Текст слайда:

Диаграмма

Диаграмма Герцшпрунга-Рассела

Слайд 5

Текст слайда:

Области звездообразования

Области звездообразования.

Гигантские молекулярные облака с массами, большими 105 массы Солнца (их известно более 6 000 в Галактике)

Туманность Орел

в 6000 световых лет от нас молодое рассеянное звёздное скопление в созвездии Змеи тёмные области в туманности — это протозвёзды

Слайд 6

Текст слайда:

Туманность Ориона

Туманность Ориона

светящаяся эмиссионная туманность с зеленоватым оттенком и находится ниже Пояса Ориона можно видеть даже невооружённым глазом в 1300 световых лет от нас, а величиной в 33 световых года

Слайд 7

Текст слайда:

Гравитационное сжатие

Гравитационное сжатие

Сжатие — следствие гравитационной неустойчивости, идея Ньютона. Позже Джинс определил минимальные размеры облаков, в которых может начаться самопроизвольное сжатие.

Имеет место достаточно эффективное охлаждение среды: высвобождающаяся энергия гравитации идет на излучение инфракрасного диапазона, уходящее в космическое пространство.

Слайд 8

Текст слайда:

Протозвезда

Протозвезда

При увеличении плотности облака оно становится непрозрачным для излучения. Начинается повышение температуры внутренних областей. Температура в недрах протозвезды достигает порога термоядерных реакций синтеза. Сжатие на какое-то время прекращается.

Слайд 9

Текст слайда:

Стационарное состояние

молодая звезда пришла на главную последовательность диаграммы Г-Р начался процесс выгорания водорода — основного звездного ядерного топлива сжатие практически не происходит, и запасы энергии больше не изменяются медленное изменение химического состава в ее центральных областях, обусловленное превращением водорода в гелий

Звезда переходит в стационарное состояние

Слайд 10

Текст слайда:

График эволюции

График эволюции типичной звезды

Слайд 11

Текст слайда:

Гиганты и сверхгиганты

когда водород полностью выгорает, звезда уходит с главной последовательности в область гигантов или при больших массах — сверхгигантов

Гиганты и сверхгиганты

Слайд 12

Текст слайда:

Гравитационное сжатие

масса звезды электроны обобществляются, образуя вырожденный электронный газ гравитационное сжатие останавливается плотность становится до нескольких тонн в см3 еще сохраняет Т=10^4 К постепенно остывает и медленно сжимается(миллионы лет) окончательно остывают и превращаются в ЧЕРНЫХ КАРЛИКОВ

Когда все ядерное топливо выгорело, начинается процесс гравитационного сжатия.

Слайд 13

Текст слайда:

Карлики

Белый карлик в облаке межзвездной пыли

Два молодых черных карлика в созвездии Тельца

Слайд 14

Текст слайда:

Масса звезды

масса звезды > 1,4 массы Солнца: силы гравитационного сжатия очень велики плотность вещества достигает миллиона тонн в см3 выделяется огромная энергия – 10^45 Дж температура – 10^11 К взрыв Сверхновой звезды большая часть звезды выбрасывается в космическое пространство со скоростью 1000-5000 км/с потоки нейтрино охлаждают ядро звезды — Нейтронная звезда

Слайд 15

Текст слайда:

Крабовидная туманность

Крабовидная туманность

Слайд 16

Текст слайда:

Взрыв

Взрыв сверхновой

Слайд 17

Текст слайда:

Размер

Слайд 18

Текст слайда:

Остаток

Слайд 19

Текст слайда:

Черная дыра

масса звезды > 2,5 массы Солнца гравитационный коллапс звезда превращается в Черную дыру

Слайд 20

Текст слайда:

Свечение

Слайд 21

Текст слайда:

Фотография

Принцип работы системы

После приказа, полученного от высших звеньев управления РВСН на специальный командный пункт, происходит запуск командной ракеты 15П011 со специальной головной частью 15Б99, которая в полёте передаёт команды на пуск всем ПУ и командным пунктам РВСН, имеющим соответствующие приёмники.

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.

Эволюция нормальных звезд

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда –  желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.

Процесс образования нейтронной звезды

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).

Главная последовательность

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории — эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.

Красный гигант

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты — это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

См. также

Пульсары и нейтронные звезды

Когда жизнь звезды заканчивается, на ее месте образуется уникальное космическое тело – нейтронная звезда. Это компактные астрономические объекты, радиус которых не превышает 10 километров. А масса нейтронной звезды составляет около 1,4 массы Солнца. Состоят такие объекты в основном из нейтронов. Эти звезды относятся к самым интересным астрофизическим объектам.

Вещество, из которого состоят эти тела, имеет сверхпроводимость, сверхтекучесть, излучение нейтрино, наличие сверхсильных магнитных полей и прочее. Просто огромна и плотность нейтронной звезды. Именно поэтому она при небольших размерах имеет невероятную массу. Строение нейтронной звезды ни на что не похоже. Внутри нее кипит раскаленное вещество, заключенное в тонкую твердую оболочку, над которой бушует горячая плазма. Это тело имеет магнитное поле, которое превосходит солнечное в триллионы раз.

То, что во Вселенной могут существовать макрообъекты, состоящие в основном  из нейтронов, доказал еще академик Л.Д.Ландау. Предположение о том, что нейтронные звезды рождаются во вспышках сверхновых, было сделано в 1934 году американскими учеными Ф. Цвикки и В.Бааде. Но, учитывая их небольшую светимость, обнаружить нейтронные звезды длительное время не удавалось. Такие тела имеют и другое название – пульсары. Их магнитные поля постоянно захватывают электроны из слоя плазмы, которые в результате начинают излучать радиосигналы.

Впервые такие радиоимпульсы были пойманы из определенных участков неба английскими учеными из Кембриджа в 1967 году. В ходе изучения мерцаний космических радиоисточников Д.Белл, работавшая под руководством Э.Хьюшина (первооткрыватель пульсаров, Лауреат Нобелевской премии в области физики за 1974 год), обнаружила строго периодический сигнал. Тогда некоторые исследователи решили, что имеют дело с сигналами внеземной цивилизации. Поэтому работы в данном направлении были засекречены. В дальнейшем было доказано, что это обычное природное явление.

Данные, полученные группой Хьюшина, стали известны другим ученым. И скоро исследователи пришли к выводу, что радиопульсары и нейтронные звезды обозначают одно и то же понятие. Самое интересное, что нейтронные звезды ученые наблюдали еще за пять лет до открытия радиопульсаторов. Вот только сделать это помогли не радиоволны, а рентгеновские лучи.

В 1962 году ученые установили на ракете специальный детектор и с его помощью смогли обнаружить достаточно мощный источник рентгеновского излучения в созвездии Скорпиона. С Земли подобные исследования провести не удавалось, поскольку рентгеновские лучи поглощаются нашей атмосферой.

 В 1970 году специалистам был известен уже целый ряд подобных объектов. Причем все они входили в состав двойных тесных систем и забирали себе часть вещества нейтронной звезды, которая находилась по соседству. В этом случае вещество приобретает скорость, близкую к скорости света, и при столкновении с поверхностью нейтронной звезды переходит в тепло (температура достигает нескольких миллионов градусов), которое и излучается в рентгеновском диапазоне.

Современной науке известны интересные тесные двойные системы, состоящие из двух нейтронных звезд. За счет гравитационных волн они довольно быстро сближаются.

В итоге за время, меньше возраста Вселенной, они должны слиться, выделив при этом колоссальное количество энергии, намного превосходящее энергию взрыва сверхновой звезды. За одной из таких систем и наблюдали в 1970 году Р. Халс и Жд.Тейлор, которые за результатами своей работы были удостоены Нобелевской премии в области физики.

Столкновение двух нейтронных звезд 

Слайды и текст этой презентации

Слайд 1

Текст слайда:

Эволюция звезд

Комарова Ирина НиколаевнаПреподаватель астрономии “Красноярский автотранспортный техникум”

Слайд 2

Текст слайда:

Этапы жизни звезд:

Рождение звездМолодые звездыСередина жизненного цикла звездыЗрелость Финальная стадия

Слайд 3

Текст слайда:

Рождение звезды (протозвезная фаза)

Эволюция звезды начинается в гигантском молекулярном облакеГравитационное сжатие облакаГрадиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро Аккре́ция — процесс приращения массы небесного тела путём гравитационного притяжения материи на него из окружающего пространства.

Слайд 4

Слайд 5

Текст слайда:

Молодые звёзды малой массы (до трёх масс Солнца)

сжатие останавливаетсяпостепенное остываниеКоричневые карлики

Слайд 6

Текст слайда:

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца)

Нет конвективных зонОни эффективно нагревают и рассеивают остатки протозвёздного облака

Слайд 7

Текст слайда:

Молодые звёзды с массой больше 8 солнечных масс

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что разгоняют облако прочь. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Слайд 8

Слайд 9

Текст слайда:

Середина жизненного цикла

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Слайд 10

Слайд 11

Текст слайда:

Зрелость

Истощение запаса водорода приводит к остановке термоядерных реакций.звезда снова начинает сжиматьсятермоядерные реакции с участием гелияЗвезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 разСтановятся красными гигантами

Слайд 12

Текст слайда:

Красные гиганты

Слайд 13

Текст слайда:

Старые звёзды с малой массой

Красные карлики, такие как Проксима Центавра, срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет. После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Слайд 14

Текст слайда:

Звёзды среднего размера

начинаются реакции синтеза углерода из гелия (миллиард лет)Изменения (размера, температуры поверхности и выпуск энергии)1) белый карлик2) нейтронная звезда (пульсар)3) чёрная дыраВ двух последних ситуациях эволюция звёзды завершается катастрофическим событием — вспышкой сверхновых.

Слайд 15

Текст слайда:

Белые карлики

Белые карлики представляют собой компактные звёзды с массами, сравнимыми или большими, чем масса Солнца, но с радиусами в 100 раз меньшими

Слайд 16

Текст слайда:

Нейтро́нная звезда́ — космическое тело, состоящее, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (∼1 км) корой вещества в виде тяжёлых атомных ядер и электронов.

Слайд 17

Текст слайда:

Черная дыра

Чёрная дыра́ — область пространства-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света, в том числе кванты самого света.

Слайд 18

Текст слайда:

Сверхмассивные звёзды

Синтезируются всё более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.Взрыв сверхновой звезды невероятной мощности

Слайд 19

Ссылки

Общая информация

Эволюция Звезд

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Термоядерный синтез в недрах звёзд

К 1939 году было установлено, что источником звёздной энергии является происходящий в недрах звёзд термоядерный синтез. Большинство звёзд испускают излучение потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным, или p-p-циклом, и углеродно-азотным, или CN-циклом. В маломассивных звёздах энерговыделение, в основном, обеспечивается первым циклом, в тяжёлых — вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции.

Фаза главной последовательности

Несмотря на то, что некоторые реакции термоядерного синтеза запускаются при более низких температурах, основная фаза водородного горения стартует при температуре в 4 млн. градусов. С этого момента начинается фаза главной последовательности. В дело вступает новая форма воспроизводства звездной энергии — ядерная. Кинетическая энергия, высвобождаемая в процессе сжатия объекта, отходит на второй план. Достигнутое равновесие обеспечивает долгую и спокойную жизнь звезды, оказавшейся в начальной фазе главной последовательности.

Деление и распад атомов водорода в процессе термоядерной реакции, происходящей в недрах звезды

С этого момента наблюдение за жизнью звезды четко привязано к фазе главной последовательности, которая является важной частью эволюции небесных светил. Именно на этом этапе единственным источником звездной энергии является результат горения водорода

Объект пребывает в состоянии равновесия. По мере расхода ядерного топлива меняется только химический состав объекта. Пребывание Солнца в фазе главной последовательности продлится ориентировочно 10 млрд. лет. Столько времени потребуется, чтобы наше родное светило израсходовало весь запас водорода. Что касается массивных звезд, то их эволюция происходит быстрее. Излучая больше энергии, массивная звезда пребывает в фазе главной последовательности всего 10-20 млн. лет.

Диаграмма Герцшпрунга – Рассела, оценивающая взаимосвязь спектра звезд с их светимостью. Точки на диаграмме – месторасположение известных звезд. Стрелки указывают смещение звезд от главной последовательности в фазы гигантов и белых карликов.

Чтобы представить эволюцию звезд, достаточно взглянуть на диаграмму, характеризующую путь небесного светила в главной последовательности. Верхняя часть графика выглядит менее насыщенной объектами, так как именно здесь сосредоточены массивные звезды. Это месторасположение объясняется их непродолжительным жизненным циклом. Из известных на сегодняшний день звезд некоторые имеют массу 70М. Объекты, масса которых превышает верхний предел — 100М, могут вообще не сформироваться.

У небесных светил, масса которых меньше 0,08М, нет возможности преодолеть критическую массу, необходимую для начала термоядерного синтеза и остаются всю свою жизнь холодными. Самые маленькие протозвезды сжимаются и образуют планетоподобные карлики.

Планетоподобный коричневый карлик в сравнении с нормальной звездой (наше Солнце) и планетой Юпитер

Литература[ | код]

Пять веков Вселенной

Астрономы считают, что пять этапов эволюции являются удобным способом представления невероятно долгой жизни Вселенной. Согласитесь, во времена, когда нам известно всего 5% о видимой Вселенной (остальные 95% занимает таинственная темная материя, существование которой только предстоит доказать), судить об ее эволюции довольно сложно. Тем не менее, исследователи пытаются понять прошлое и настоящее Вселенной, объединив достижения науки и человеческой мысли двух последних столетий.

Если вам посчастливилось оказаться под ясным небом в темном месте безлунной ночью, то при взгляде вверх вас ждет великолепный космический пейзаж. С помощью обычного бинокля можно увидеть умопомрачительное небесное полотно из звезд и пятен света, которые накладываются друг на друга. Свет от этих звезд достигает нашей планеты преодолевая огромные космические расстояния и пробивается к нашим глазам через пространство–время. Такова Вселенная космологической эпохи, в которой мы живем. Она называется звездная эрой, но есть еще четыре других.

]]>

]]>

Изображение составлено исследователями Принстонского университета, основываясь на снимках, полученных космическими телескопами NASA

Существует множество способов рассмотреть и обсудить прошлое, настоящее и будущее Вселенной, но один из них больше других привлек внимание астрономов. Первая книга о пяти веках Вселенной была опубликована в 1999 году, под названием «Пять веков Вселенной: внутри физики вечности»

(последние обновления внесены в 2013 году). Авторы книги Фред Адамс и Грегори Лафлин дали название каждому из пяти веков:

  • Первобытная эра
  • Звездная эра
  • Дегенеративная эра
  • Эра Черных Дыр
  • Темная эра

Необходимо отметить, что далеко не все ученые являются сторонниками этой теории. Тем не менее, многие астрономы находят разделение на пять этапов полезным способом обсуждения столь необычайно большого количества времени.

Эволюция звезд с научной точки зрения

Любая звезда зарождается из сгустка холодного межзвездного газа, который под действием внешних и внутренних гравитационных сил сжимается до состояния газового шара. Процесс сжатия газовой субстанции не останавливается ни на мгновение, сопровождаясь колоссальным выделением тепловой энергии. Температура нового образования растет до тех пор, пока не запускается в ход термоядерный синтез. С этого момента сжатие звездной материи прекращается, достигнут баланс между гидростатическим и тепловым состоянием объекта. Вселенная пополнилась новой полноценной звездой.

Главное звездное топливо — атом водорода в результате запущенной термоядерной реакции

В эволюции звезд принципиальное значение имеют их источники тепловой энергии. Улетучивающаяся в пространство с поверхности звезды лучистая и тепловая энергия пополняются за счет охлаждения внутренних слоев небесного светила. Постоянно протекающие термоядерные реакции и гравитационное сжатие в недрах звезды восполняют потерю. Пока в недрах звезды имеется в достаточном количестве ядерное топливо, звезда светится ярким светом и излучает тепло. Как только процесс термоядерного синтеза замедляется или прекращается совсем, для поддержания теплового и термодинамического равновесия запускается в действие механизм внутреннего сжатия звезды. На данном этапе объект уже излучает тепловую энергию, которая видна только в инфракрасном диапазоне.

Исходя из описанных процессов, можно сделать вывод, эволюция звезд представляет собой последовательную смену источников звездной энергии. В современной астрофизике процессы трансформации звезд можно расставить в соответствии с тремя шкалами:

  • ядерная временная шкала;
  • тепловой отрезок жизни звезды;
  • динамический отрезок (финальный) жизни светила.

В каждом отдельном случае рассматриваются процессы, определяющие возраст звезды, ее физические характеристики и разновидность гибели объекта. Ядерная временная шкала интересна до тех пор, пока объект питается за счет собственных источников тепла и излучает энергию, являющуюся продуктом ядерных реакций. Оценка длительности этого этапа вычисляется путем определения количества водорода, которое превратится в процессе термоядерного синтеза в гелий. Чем больше масса звезды, тем больше интенсивность ядерных реакций и соответственно выше светимость объекта.

Размеры и масса различных звезд, начиная от сверхгиганта, заканчивая красным карликом

Тепловая временная шкала определяет этап эволюции, в течение которого звезда расходует всю тепловую энергию. Этот процесс начинается с того момента, когда израсходовались последние запасы водорода и ядерные реакции прекратились. Для поддержания равновесия объекта запускается процесс сжатия. Звездная материя падает к центру. При этом происходит переход кинетической энергии в тепловую энергию, затрачиваемую на поддержание необходимого температурного баланса внутри звезды. Часть энергии улетучивается в космическое пространство.

В зоне непрерывного контроля

Особенность загоризонтной радиолокационной станции заключается в способности мониторить воздушное пространство за пределами радиогоризонта. Такие РЛС являются частью системы предупреждения о ракетном нападении (СПРН).

Также по теме

«Создание надёжной системы обороны»: Россия развернула загоризонтные РЛС «Подсолнух» на трёх направлениях

Российские загоризонтные РЛС «Подсолнух» развёрнуты на Дальнем Востоке, Балтике и Каспии. Об этом рассказал глава разработавшего эти…

«Загоризонтные РЛС — вид локаторов, предназначенных для сверхдальней разведки воздушного пространства. Они вскрывают намерения противника задолго до того, как его средства воздушного нападения сформируются и предпримут атаку или провокацию с пересечением границы», — говорится в материалах Минобороны РФ. 

В свою очередь, на сайте «РТИ Системы» отмечается, что современные российские загоризонтные радиолокационные станции позволяют передавать необходимую информацию средствам ПВО для обеспечения перехвата воздушных целей.

К достоинствам отечественных РЛС относят непрерывный 24-часовой мониторинг воздушного пространства, высокую степень автоматизации основных процессов, автоматизированную адаптацию к геофизическим и помеховым условиям, а также возможность эксплуатации в различных природно-климатических зонах.

Новейшие российские загоризонтные станции способны практически безошибочно обнаруживать самолёты (с вероятностью не менее 80%). Период обнаружения самолёта в зоне непрерывного контроля не превышает 350 секунд (не более 6 минут). Групповые цели фиксируются за 6—15 минут с момента взлёта.

Заступивший на боевое дежурство «Контейнер» является одной из новейших отечественных разработок в области радиолокации. Станция представляет собой антенное поле, состоящее из 144 мачт высотой с 10-этажный дом каждая. Длина площадки, на которой расположены элементы РЛС, составляет 1300 м, ширина — 200 м. Аппаратурный комплекс станции размещён в транспортабельных контейнерах. Сектор обзора РЛС — 180°, диапазон рабочих частот — 3—30 МГц.

  • Расчёты РЛС «Контейнер» на построении

По данным Минобороны РФ, максимальная дальность действия «Контейнера» составляет 3 тыс. км (по информации разработчика — 6 тыс. км). РЛС может брать на одновременное сопровождение 5 тыс. воздушных объектов. Военные уверены, что детище НИИДАР «обеспечит разведку воздушных объектов, в том числе и гиперзвуковых, над территорией западноевропейских государств и в Юго-Западном регионе».

«Станция является важным звеном в системе стратегического сдерживания, важнейшим звеном и краеугольным камнем в системе разведки и предупреждения о воздушно-космическом нападении», — приводит слова командующего 1-й армии ПВО-ПРО Воздушно-космических сил РФ генерал-лейтенанта Андрея Дёмина пресс-служба Минобороны.

При разработке «Контейнера» специалисты НИИДАР опирались на опыт создания советской загоризонтной РЛС «Дуга». В 1980-е годы она располагалась в Чернобыле и в Комсомольске-на-Амуре. За недолгое время эксплуатации станции отследили свыше 100 запусков американских ракет.

Также по теме

«Незаменим для подготовки к боевым миссиям»: каковы экспортные перспективы российского самолёта Як-130

На стартующем 17 ноября в ОАЭ международном авиасалоне Dubai Airshow 2019 впервые будет представлен российский учебно-боевой самолёт…

Уникальность «Контейнера» заключается в использовании эффекта отражения радиосигнала от ионосферы Земли. Речь идёт о так называемых пространственных волнах. Их применение позволяет мониторить ситуацию на территории, которая недоступна для прямолинейных радиоволн обычных РЛС.

«Станция использует явление отражения радиоволн декаметрового диапазона от ионосферы. Но у этой РЛС есть так называемая мёртвая зона. Она составляет 900 километров, поэтому было принято решение о расположении станции в глубине страны. Это позволяет ей находиться в безопасности и контролировать воздушное пространство сопредельных государств», — заявил в октябрьском интервью РИА Новости генеральный директор НИИДАР Кирилл Макаров.

Топ-менеджер сообщил, что предприятие планирует поставить Минобороны РФ четыре «Контейнера». Станции будут размещены для мониторинга воздушной обстановки на западном, восточном, северо-западном и южном направлениях.

Из числа загоризонтных РЛС, помимо «Контейнера», концерн «РТИ Системы» поставляет в части ВКС России станцию «Подсолнух», которая позволяет контролировать ситуацию в пределах 200-мильной прибрежной экономической зоны. Данная РЛС способна сопровождать до 200 надводных и до 100 воздушных целей. Подобно «Контейнеру, «Подсолнух» также обнаруживает самолёты, изготовленные по технологии «стелс».

Молодые звёзды[править | править код]

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массыправить | править код

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

О том, какими характеристиками в момент попадания на главную последовательность обладают звёзды меньшей массы, достоверно неизвестно, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной[источник не указан 2027 дней]. Все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам. Их судьба — постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массыправить | править код

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца)[источник не указан 2446 дней] качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Молодые звёзды с массой больше 8 солнечных массправить | править код

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра.
У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Термоядерный синтез в недрах звёзд[править | править код]

К 1939 году было установлено, что источником звёздной энергии является происходящий в недрах звёзд термоядерный синтез. Большинство звёзд испускают излучение потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным, или p-p-циклом, и углеродно-азотным, или CN-циклом. В маломассивных звёздах энерговыделение в основном обеспечивается первым циклом, в тяжёлых — вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции.

Исторический путь легионов

Гипотезы о жизни звезд

Одна из оригинальных гипотез о жизненном цикле звезды была предложена астрономом Норманом Локиером. Он считал, что звезды возникают из метеорной материи. При этом положения его гипотезы опирались не только на имеющиеся в астрономии теоретические выводы, но и на данные спектрального анализа звезд. Локиер был убежден в том, что химические элементы, которые принимают участие в эволюции небесных тел, состоят из элементарных частиц – «протоэлементов». В отличие от современных нейтронов, протонов и электронов, они обладают не общим, а индивидуальным характером. Например, согласно Локиеру, водород распадается на так называемый «протоводород»; железо становится «протожелезом». Описать жизненный цикл звезды пытались и другие ученые-астрономы, например, Джеймс Хопвуд, Яков Зельдович, Фред Хойл.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector