Кумулятивы против линкоров

Содержание

Где используется

Собственно сам кумулятивный эффект наблюдали, наверное, все без исключения люди. Возникает он, к примеру, при падении капли в воду. В этом случае на поверхности последней образуются воронка и тонкая струя, направленная вверх.

Использоваться кумулятивный эффект может, к примеру, в исследовательских целях. Создавая его искусственно, ученые ищут пути достижения высоких скоростей веществ — до 90 км/с. Также этот эффект используется в промышленности — в основном в горных разработках. Но наибольшее применение он, конечно же, нашел в военном деле. Боеприпасы, работающие на таком принципе, используются разными странами с начала прошлого века.

Кумулятивный снаряд: принцип действия

В боевой части заряда делается воронкообразное углубление, которое облицовывается слоем металла толщиной в один или несколько миллиметров. Данная воронка повернута широким краем к мишени.

После детонации, которая происходит у острого края воронки, взрывная волна распространяется к боковым стенкам конуса и схлопывает их к оси боеприпаса. При взрыве создается огромное давление, которое превращает металл облицовки в квазижидость и под огромным давлением перемещает ее вперед вдоль оси снаряда. Таким образом образуется струя металла, которая движется вперед с гиперзвуковой скоростью (10 км/с).

Следует отметить, что при этом металл облицовки не плавится в традиционном понимании этого слова, а деформируется (превращается в жидкость) под огромным давлением.

Когда струя металла входит в броню, прочность последней не имеет никакого значения. Важна ее плотность и толщина. Пробивная способность кумулятивной струи зависит от ее длины, плотности материала облицовки и материала брони. Максимальное проникающее действие возникает при взрыве боеприпаса на определенном расстоянии от брони (оно называется фокусным).

Взаимодействие брони и кумулятивной струи происходит по законам гидродинамики, то есть давление столь велико, что самая крепкая танковая броня при попадании на нее струи ведет себя как жидкость. Обычно кумулятивный боеприпас может пробить броню, толщина которой составляет от пяти до восьми его калибров. При облицовке из обедненного урана бронебойное действие увеличивается до десяти калибров.

Каким бывает оружие массового поражения

Существующая сегодня классификация оружия массового поражения довольно проста, ОМП делится на три вида:

  • ядерное (термоядерное);
  • химическое;
  • биологическое.

В свою очередь ядерное оружие (ЯО) делится на:

  • Ядерные взрывные устройства, в которых используется исключительно энергия деления ядер плутония или урана.
  • Термоядерные взрывные устройства, у которых основная часть энергии возникает в результате реакций ядерного синтеза.

В настоящее время подавляющая часть существующих зарядов ядерного оружия работают на основе реакций синтеза, то есть относятся к термоядерному оружию. Также ЯО принято разделять по мощности, от сверхмалых (до 1 Кт) до сверхкрупных (свыше 1 Мт). Отдельно следует упомянуть ядерное оружие, у которого один из поражающих факторов значительно превалирует над остальными. Так, например, кобальтовая бомба дает максимально возможное заражение местности, а основным поражающим фактором нейтронной бомбы является проникающее излучение.

Ядерный взрыв во всем его грозном великолепии

Классификация химического оружия основана на физиологическом воздействии, которое оно оказывает на организм человека. Это важнейшая характеристика оружия массового поражения данного вида. Учитывая ее, боевые газы бывают:

  • Нервно-паралитического действия (зарин, зоман, табун и V-газы);
  • Кожно-нарывного действия (иприт, люизит);
  • Общеядовитого действия (хлорциан, синильная кислота);
  • Удушающего действия (фосген);
  • Психохимического действия;
  • Раздражающего действия (хлорпикрин, адамсин).

Биологическое или бактериологическое оружие массового поражения классифицируют по видам патогенных организмов, а также способам его применения.

https://youtube.com/watch?v=oieG2GI6SCg

Взрыватели фугасных снарядов

Первым взрывателем осколочно-фугасных боеприпасов был обычный фитиль, который поджигался при выстреле из пушки и инициировал подрыв ВВ через определенное время. Однако после появления нарезных орудий и снарядов конической формы, что гарантировало встречу с препятствием передней части корпуса, появились взрыватели ударного действия. Их преимущество заключалось в том, что подрыв ВВ происходил сразу после контакта с преградой. Для разрушения ударные взрыватели оснастили замедлителем. Это позволяло боеприпасу сначала проникнуть внутрь препятствия, тем самым резко усиливая его эффективность. Оснастив фугас с таким взрывателем более массивным корпусом с толстыми стенками (что позволяло, за счет кинетической энергии, проникать глубоко в стены долговременных огневых точек), получили бетонобойный снаряд.

Кстати, на начальном этапе Великой Отечественной войны при помощи 152-миллиметровых бетонобойных снарядов успешно боролись с немецкой бронетехникой. При попадании в средний или легкий немецкий танк снаряд, за счет своего веса, сначала разрушал машину, срывал башню, а потом взрывался. Недостатком ударных взрывателей было то, что при попадании в вязкую почву (например, болото) они не срабатывали. Эту проблему смог устранить дистанционный взрыватель, позволяющий произвести подрыв боеприпаса на определенном расстоянии от среза ствола орудия. В настоящее время данный тип детонатора применяется практически во всех ОФС. Он позволяет, например, вести стрельбу из танковых пушек по воздушным целям (вертолетам).

Снайперская винтовка ВССК Выхлоп

Преимущества и недостатки кумулятивных боеприпасов

Подобные боеприпасы имеют как сильные стороны, так и недостатки. К их несомненным достоинствам можно отнести следующее:

  • высокая бронебойность;
  • бронепробиваемость не зависит от скорости боеприпаса;
  • мощное заброневое действие.

У калиберных и подкалиберных снарядов бронепробиваемость напрямую связана с их скоростью, чем она выше, тем лучше. Именно поэтому для их применения используются артиллерийские системы. Для кумулятивных боеприпасов скорость не играет роли: кумулятивная струя образуется при любой скорости столкновения с мишенью. Поэтому кумулятивная боевая часть – идеальное средство для гранатометов, безоткатных орудий и противотанковых ракет, бомб и мин. Более того, слишком высокая скорость снаряда не дает образоваться кумулятивной струе.

Попадание кумулятивного снаряда или гранаты в танк часто приводит к взрыву боекомплекта машины и полностью выводит ее из строя. Экипаж при этом практически не имеет шансов на спасение.

Кумулятивные боеприпасы имеют весьма высокую бронебойность. Некоторые современные ПТРК пробивают гомогенную броню с толщиной более 1000 мм.

Недостатки кумулятивных боеприпасов:

  • довольно высокая сложность изготовления;
  • сложность применения для артиллерийских систем;
  • уязвимость перед динамической защитой.

Снаряды нарезных орудий стабилизируются в полёте за счет вращения. Однако центробежная сила, которая возникает при этом, разрушает кумулятивную струю. Придуманы разные «хитрости», для того чтобы обойти эту проблему. Например, в некоторых французских боеприпасах вращается только корпус снаряда, а его кумулятивная часть устанавливается на подшипниках и остается неподвижной. Но практически все решения этой проблемы значительно усложняют боеприпас.

Боеприпасы для гладкоствольных орудий, наоборот, имеют слишком высокую скорость, которая недостаточна для фокусирования кумулятивной струи.

Именно поэтому боеприпасы с кумулятивные боевые части более характерны для низкоскоростных или неподвижных боеприпасов (противотанковые мины).

Против подобных боеприпасов существует довольно простая защита – кумулятивная струя рассеивается с помощью небольшого контрвзрыва, который происходит на поверхности машины. Это так называемая динамическая защита, сегодня этот способ применяется очень широко.

Чтобы пробить динамическую защиту используется тандемная кумулятивная боевая часть, которая состоит из двух зарядов: первый устраняет динамическую защиту, а второй – пробивает основную броню.

Сегодня существуют кумулятивные боеприпасы с двумя и тремя зарядами.

Работы в области авиации

Высокие «полевые» характеристики новых патронов

Хвостовик пули отныне не завальцован. Именно этот конструкторский прием позволил окончательно решить проблему с кувырканием боеприпаса в полете. Отныне пули и газогенераторы изготавливаются отдельно. Наконец, была проведена серьезная работа в области изменения развесовки пули, что также положительно сказалось на баллистике выстрела.

При стрельбе на 25 метров поперечник рассеивания составляет 20 см, что для такого типа оружия – прекрасный результат. Если сравнивать эти результаты с травматическим пистолетом «Шаман», то окажется, что они лучше приблизительно в 1,5 раза. При этом в патронах «Осы» пуля удерживается в гильзе только за счет упругого напряжения резины, что значительно повышает точность и кучность стрельбы.

2.4. Бетонобойные боеприпасы

Боеприпасы предназначены для поражения железобетонных сооружений высокой прочности, а также для разрушения взлетно-посадочных полос аэродромов. В корпусе боеприпаса размещаются два заряда – кумулятивный и фугасный – и два детонатора. При встрече с преградой срабатывает детонатор мгновенного действия, который подрывает кумулятивный заряд. С некоторой задержкой (после прохождения боеприпаса через перекрытие) срабатывает второй детонатор, подрывающий фугасный заряд, который и вызывает основное разрушение объекта.

Кумулятивного заряда может и не быть. В этом случае преграда пробивается за счёт кинетического действия снаряда. Срабатывание фугасного заряда происходит с задержкой, позволяющей снаряду пробить преграду, либо войти в её толщу.

Примером такого боеприпаса является активно-реактивная бетонобойная бомба БЕТАБ-500ШП, предназначенная для разрушения железобетонных укрытий и ВПП. За основу была взята обычная фугасная авиабомба. Корпус выполнен более прочным с утолщённой головной частью. Бомба снабжена тормозным парашютом и реактивным ускорителем. Она сбрасывается в режиме горизонтального полета с высот 50-100 м. После срабатывания тормозного парашюта включается ускоритель, который сообщает бомбе энергию, необходимую для пробивания преграды. Бомба сначала пробивает преграду, а затем взрывается. БЕТАБ-500ШП может пробивать перекрытие толщиной до 550 мм. В грунте средней плотности образует воронку диаметром 4,5 м. При попадании бомбы во взлётно-посадочную полосу бетонное покрытие разрушается на площади до 50 м2.

С конца 1943 г. на вооружение Советской Армии стали поступать тяжёлые штурмовые самоходные артиллерийские орудия ИСУ-152 «Зверобой». Действуя в обороне в основном из засад, ИСУ-152 показали, что нет такой вражеской техники, которую они не могли бы уничтожить. 152-мм бронебойные снаряды разбивали средние немецкие танки Pz Kpfw-III и Pz Kpfw-IV, броня новых «Тигров» и «Пантер» тоже не могла ничего противопоставить этим снарядам. Зачастую за неимением бронебойных снарядов по танкам врага стреляли фугасными или бетонобойными. Кинетическая энергия 152,4-мм снаряда была настолько большой, что при попадании в башню он чисто механическим ударом разрушал элементы конструкции погона, смещая башню на несколько десятков сантиметров от оси вращения. Бывали моменты, когда эти башни буквально летали в воздухе от последующей детонации боекомплекта после попадания снаряда. Наконец, ИСУ-152 была единственной советской боевой машиной, способной успешно противостоять грозной немецкой САУ «Фердинанд» («Элефант»).

Рис. 2.5. Кинетические и кумулятивные бетонобойные боеприпасы

Принцип работы кумулятивного снаряда

Во время Великой Отечественной войны был разработан кумулятивный снаряд, принцип действия которого основывался на направленном взрыве. В нем установлена металлическая конусная воронка, которая имеет толщину стенок до одного сантиметра. Широкий край воронки повернут напрямую к мишени. После столкновения взрывателя с объектом создается давление, которое идет по конусу в центр снаряда.

10 км
в секунду, такую скорость имеет высвобождаемая снарядом обратная струя

После чего снаряд высвобождает под огромным давлением в обратную сторону металлическую струю, которая имеет скорость до 10 км в секунду. Высвобождаемая снарядом металлическая струя начинает входить в броню или в любой другой объект на высокой скорости, при этом игнорируя толщину объекта воздействия. Именно таков принцип работы кумулятивного снаряда.

Кумулятивный снаряд в разрезе

Что такое кумулятивный снаряд? Если описать все более просто, то при воздействии кумулятивного снаряда броня под давлением превращается в жидкость.

Сравнение снарядов различного типа

Действие кумулятивной снаряда напрямую зависит от размера, используемого материала и объекта воздействия. Пробитие таких снарядов может превышать их калибр от пяти до десяти раз.

DámskýDeník

Разновидности

Существуют различные виды конструкции подкалиберных боеприпасов:

  • С неотделяющимся поддоном (англ. Armour-piercing, composite rigid, сокр. APCR) — представляют собой тело снаряда из лёгкого металла с твёрдосплавным сердечником. Весь полёт до цели такой снаряд проходит как единое целое, а в процессе пробивания бронезащиты цели участвует только сердечник, отделяющийся от поддона при столкновении с броней. Сравнительно большое аэродинамическое сопротивление (как у обычного бронебойного снаряда) при небольшой массе приводит к существенному падению бронепробиваемости и точности с расстоянием.
  • С неотделяющимся поддоном, для использования с коническим стволом (англ. Armour-piercing, composite non-rigid, сокр. APCNR) — конструкция поддона обеспечивает его смятие при прохождении по коническому стволу специальной конструкции, за счёт чего уменьшается площадь поперечного сечения снаряда и снижается аэродинамическое сопротивление.
  • С отделяющимся поддоном (англ. Armour-piercing, discarding-sabot, сокр. APDS) — конструкция снаряда после выхода из ствола обеспечивает срыв поддона с сердечника набегающим потоком воздуха или, в случае нарезного орудия, центробежной силой. За счёт небольшого диаметра сердечника обеспечивается низкое сопротивление воздуха при полёте.
  • Бронебойный оперённый подкалиберный снаряд (англ. Armour-piercing, fin-stabilized, discarding-sabot, сокр. APFSDS) — подкалиберный снаряд с отделяющимся поддоном, где для обеспечения устойчивости полёта и повышения кучности сердечник снабжают небольшим оперением.

История создания компании Ceska Zbroovka, производителя карабина CZ 527

1918 год Создание Чехословацкой республики. Руководству республики принимает решение о создании собственного оружейного производства. Создаются несколько оружейных заводов — «Збройовка-Брно», «Ческа-Збройовка-Страконице» и «Шкода».
Июль 1936 года Появление компании «Ческа-Збройовка» как филиала завода «Ческа-Збройовка-Страконице», в свою очередь, являвшегося частью «Збройовки-Брно».
Март 1939 – май 1945 годы Компания «CZ» была переименована в «Bohmische Waffenwerke» — «Богемский оружейный завод».
1947 год Завод компании «CZ» был национализирован, после чего было начато производство оружия для нужд армии.
1958 год Переезд головного завода в город Угерский Брод, что позволило расширить ассортимент производимой продукции.
1988 год Фирма вернулась к своему оригинальному названию — Ceska Zbroovka. После смены политического режима в Чехословакии Ceska Zbroovka стала акционерным обществом, которая функционирует и по сей день.

Интересные факты

  • Первоначально кумулятивные снаряды назывались бронепрожигающими, так как считалось (исходя из формы пробитой воронки), что они именно прожигают броню. В реальности же при подрыве заряда температура облицовки достигает всего лишь 200—600 °C, что значительно ниже температуры её плавления.
  • Распространено мнение, что при попадании кумулятивной струи в танк или иную броневую цель находящиеся внутри погибают от баротравмы при резком повышении давления в замкнутом объеме после пробития брони, и это одна из причин, почему десант БМП предпочитает ездить снаружи, на верхнем листе, а не внутри машины, а также поэтому некоторые танкисты предпочитают езду с открытыми люками, для сброса давления. В реальности же всё наоборот: расширяющиеся газы сдетонировавшего кумулятивного заряда не могут проникнуть за пробитую броню в образовавшееся небольшое отверстие, а вот открытые люки приводят к «затеканию» ударной волны и поражению экипажа.

Мы пойдем другим путем

Американцы снаряжали бомбы объемного взрыва окисью этилена, окисью пропилена, метаном, пропилнитратом и МАРР (смесью метилацетилена, пропадиена и пропана). Уже тогда было установлено, что при срабатывании бомбы, содержащей 10 галлонов (32−33 л) окиси этилена, образовывалось облако топливовоздушной смеси радиусом 7,5−8,5 м и высотой до 3 м. Через 125 мс облако подрывалось несколькими детонаторами. Образующаяся ударная волна имела по фронту избыточное давление 2,1 МПа. Для сравнения: чтобы создать такое давление на расстоянии 8 м от тротилового заряда, требуется около 200−250 кг тротила. На расстоянии 3−4 радиусов (22,5−34 м) давление в ударной волне быстро снижается и составляет уже около 100 кПа. Для разрушения ударной волной самолета требуется давление 70−90 кПа. Следовательно, такая бомба при взрыве способна в радиусе 30−40 м от места взрыва полностью вывести из строя самолет или вертолет на стоянке. Это было написано в специальной литературе, которую читали и в СССР, где тоже начали эксперименты в данной области.

Занимательная физика Ударная волна от традиционного ВВ, например тротила, имеет крутой фронт, быстрое угасание и последующую пологую волну разряжения.

Советские специалисты вначале пытались изобразить немецкий вариант с угольной пылью, но постепенно перешли на металлические порошки: алюминий, магний и их сплавы. В экспериментах с алюминием было обнаружено, что особого фугасного действия он не дает, зато дает замечательное зажигательное.

Отработали и различные окиси (окись этилена и пропилена), но они были токсичны и довольно опасны при хранении ввиду своей летучести: достаточно было небольшого подтравливания окиси, чтобы любая искра подняла арсенал на воздух. В итоге остановились на компромиссном варианте: смеси разных видов горючего (аналогов легких бензинов) и порошка алюминий-магниевого сплава в пропорции 10:1. Однако эксперименты показали, что при шикарных внешних эффектах поражающее действие объемно-детонирующих зарядов оставляло желать лучшего. Первой потерпела фиаско идея атмосферного взрыва для поражения самолетов — эффект оказался ничтожным, разве что «сбоили» турбины, которые тут же перезапускались заново, так как они даже не успевали остановиться. Против бронетехники это вообще не работало, там даже двигатель не глох. Эксперименты показали, что ОДАБ — это специализированные боеприпасы для поражения малостойких к ударной волне целей, прежде всего неукрепленных зданий, и живой силы. И все.

Объемно-детонирующий взрыв имеет более пологий фронт ударной волны с более растянутой по времени зоной высокого давления.

Однако маховик чудо-оружия был раскручен, и ОДАБам приписывались прямо-таки легендарные подвиги. Особо известен случай спуска такими бомбами снежных лавин в Афганистане. Посыпался дождь наград, в том числе самых высоких. В отчетах об операции была упомянута масса лавины (20 000 т) и написано, что взрыв объемно-детонирующего заряда эквивалентен ядерному заряду. Ни много ни мало. Хотя любой горноспасатель спускает точно такие же лавины простыми тротиловыми шашками.

Совсем уж экзотическое применение технологии собирались найти в сравнительно недавнее время, разработав в рамках программ по конверсии объемно-детонирующую систему на основе бензина для сноса хрущевок. Получалось быстро и дешево. Было только одно «но»: сносимые хрущевки располагались не в открытом поле, а в заселенных городах. А плиты при таком взрыве разлетались метров на сто.

Взрыв термобарического боеприпаса имеет сильно размытый фронт ударной волны, который не является первичным поражающим фактором.

Тюнинг

Усовершенствовать мелкокалиберный карабин можно установкой оптики. Также производитель продумал возможность установления сошки – специальная насечка уже имеется.

Однако серьезных доработок не требуется – удобства и качество карабина, как утверждают многие пользователи, высоки. Вместо стандартного магазина можно поставить более емкие, 10-местные магазины. Но они немного портят строгий изящный силуэт карабина.

Карабин CZ 512 отлично подходит для длительных охотничьих вылазок, поскольку довольно прикладист, прост и достаточно легок. Благодаря оптимальной длине чистку можно проводить на привале, в любой момент сменить оптику.

Видео обзор CZ 512

Предыдущая запись Меткий стрелок
Следующая запись Нам не страшен серый волк … или всё-таки страшен?

Кумулятивный эффект

На картинке — наглядная иллюстрация кумулятивного эффекта, или эффекта Манро: падающая в воду капля пробивает углубление в поверхности, которое затем «схлопывается», выбрасывая вверх струйку воды. Когда дети играют и бьют по воде ладонью, чтобы обрызгать друг друга, они тоже создают кумулятивные струи. Термин «кумуляция» происходит от латинского cumulatio — «скопление» или cumulo — «накапливаю» и означает увеличение или усиление какого-либо эффекта за счет сложения или накопления однородных с ним эффектов. В физике этот термин характеризует кратковременные процессы (как правило, это взрывы) и подразумевает усиление их в определенном месте или в направлении действия.

Представьте себе заряд взрывчатого вещества, находящийся в однородной, плотной среде — допустим, в жидкости. В какой-то момент происходит его взрыв, то есть чрезвычайно быстрое выделение запасенной веществом энергии. Продукты взрыва имеют очень высокую температуру, большую плотность и находятся под огромным давлением, они резко сжимают окружающую среду, создавая скачок уплотнения. Этот скачок распространяется по среде со сверхзвуковой скоростью, образуя так называемую «взрывную волну». Если заряд взорвался в небольшой области (точечный взрыв), то волна имеет сферическую форму. Частицы, которым она передает энергию, приобретают скорости, направленные от центра взрыва, и модули этих скоростей для равноудаленных частиц одинаковы. Следовательно, и плотность кинетической энергии во всех направлениях от центра одинакова.

Теперь представьте, что тем или иным способом нам удалось перераспределить энергию взрыва в пространстве, сделав так, чтобы плотность кинетической энергии в одном направлении была значительно больше, чем в остальных. Таким образом, скорость частиц в этом направлении возрастет, и возникнет струя. Именно этот эффект концентрации энергии в одном направлении и называется кумулятивным, а возникающая при этом струя — кумулятивной струей. Конечно, кумулятивные струи могут возникать не только при взрывах

Важно создать такие условия, когда плотность кинетической энергии движущейся среды быстро возрастает в небольшом объеме. И если этот объем не сферически-симметричен, то возникнет струя

Схема кумулятивного эффекта. Изображение с сайта ru.wikipedia.org

Исследователи взрывчатых веществ выяснили, что если в снаряде сделать полое углубление, то разрушительную энергию можно сконцентрировать на небольшом участке. В 1792 году горный инженер Франц фон Баадер провел подобные эксперименты с использованием дымного пороха, однако по-настоящему успешными эти эксперименты стали с появлением высокобризантных веществ. Уже в XIX веке кумулятивный эффект повторно исследовал и подробно описал в своих работах американец Чарльз Манро (Charles Edward Munro). В 1938 году Франц Томанэк (Franz Rudolf Thomanek) в Германии и Генри Мохоупт (Henry Mohaupt) в Швейцарии независимо друг от друга открыли эффект увеличения пробивной способности снаряда, в котором сделано конусное углубление, облицованное металлической воронкой. Эти перспективные разработки не замедлили получить применение у военных — в минно-взрывном деле и в артиллерии. Кумулятивные боеприпасы впервые использовали в боевых условиях 10 мая 1940 года при штурме форта Эбен-Эмаль (Бельгия).

С началом Великой Отечественной войны советские танкисты встретились с кумулятивным оружием немецкой армии — гранатами и снарядами. Поражая бронированные машины, такие снаряды оставляли характерные оплавленные отверстия и были названы «бронепрожигающими». Весной 1942 года на Софринском полигоне испытали снаряд, разработанный на основе немецкого трофея, и затем первый кумулятивный снаряд был принят на вооружение советской армии. В 1949 году советский математик и механик Михаил Алексеевич Лаврентьев становится лауреатом Сталинской премии за создание теории кумулятивных струй.

На чем основано столь мощное действие кумулятивных зарядов? За счет углубления в виде воронки, которая при взрыве «схлопывается», как пробитая каплей поверхность воды, создается газовая струя из продуктов взрыва. Если воронка покрыта металлической облицовкой, струя получается из расплавленного металла высокой температуры. Поражение достигается действием струи небольшого диаметра на участок порядка 80 мм (см. видео). При опредленном расстоянии до цели эта струя имеет мощнейшее бронебойное действие, благодаря которому кумулятивный эффект и получил свою печальную известность.

Демонстрация кумулятивного эффекта на примере разных типов снарядов

Фото с сайта popmech.ru.

Андрей Алубаев

Механизм действия кумулятивного заряда[править | править код]

Кумулятивная струяправить | править код

После взрыва капсюля-детонатора заряда, возникает детонационная волна, которая перемещается вдоль оси заряда.

Волна, распространяясь к облицовке поверхности конуса, схлопывает её в радиальном направлении, при этом в результате соударения частей облицовки давление в ней резко возрастает. Давление продуктов взрыва, достигающее порядка 1010Па (105 кгс/см²), значительно превосходит предел текучести металла, поэтому движение металлической облицовки под действием продуктов взрыва подобно течению жидкости, которое, однако, обусловлено не плавлением, а пластической деформацией.

Аналогично жидкости, металл облицовки формирует две зоны: большой по массе (порядка 70—90 %) медленно двигающийся «пест» и меньшую по массе (порядка 10—30 %) тонкую (порядка толщины облицовки) гиперзвуковую металлическую струю, перемещающуюся вдоль оси симметрии заряда, скорость которой зависит от скорости детонации взрывчатого вещества и геометрии воронки. При использовании воронок с малыми углами при вершине возможно получить крайне высокие скорости, но при этом возрастают требования к качеству изготовления облицовки, так как повышается вероятность преждевременного разрушения струи. В современных боеприпасах используются воронки со сложной геометрией (экспоненциальные, ступенчатые и др.) с углами в диапазоне от 30 до 60°; скорость кумулятивной струи при этом достигает 10 км/с.

Процесс запрессовки медной облицовочной юбки, она же в виде готового изделия и внутри снаряженного боеприпаса в разрезе

Поскольку при встрече кумулятивной струи с бронёй развивается очень высокое давление, на один-два порядка превосходящее предел прочности металлов, то струя взаимодействует с бронёй в соответствии с законами гидродинамики, то есть при соударении они ведут себя как идеальные жидкости. Прочность брони в её традиционном понимании в этом случае практически не играет роли, а на первое место выходят показатели плотности и толщины бронирования.

Теоретическая пробивная способность кумулятивных снарядов пропорциональна длине кумулятивной струи и квадратному корню отношения плотности облицовки конуса (воронки) к плотности брони. Практическая глубина проникновения кумулятивной струи в монолитную броню у существующих боеприпасов варьируется в диапазоне от 1,5 до 4 калибров.

При схлопывании конической оболочки скорости отдельных частей струи оказываются различными, и струя в полёте растягивается. Поэтому небольшое увеличение промежутка между зарядом и мишенью увеличивает глубину пробивания за счёт удлинения струи. Однако при значительных расстояниях между зарядом и мишенью непрерывность струи нарушается, что снижает бронебойный эффект. Наибольший эффект достигается на так называемом «фокусном расстоянии», на котором струя максимально растянута, но ещё не разорвана на отдельные фрагменты. Для выдерживания этой дистанции используют различные типы наконечников соответствующей длины.

При перемещении в твёрдой среде градиентно разорванная кумулятивная струя самоцентрируется, а диаметр трека по мере удаления от точки фокуса уменьшается. При движении разорванной на фрагменты кумулятивной струи в жидкостях и газах каждый фрагмент перемещается по собственной траектории, а диаметр трека по мере удаления от точки фокуса увеличивается. Этим объясняется резкое снижение пробивной способности высокоградиентных кумулятивных струй при использовании противокумулятивных экранов.

Использование заряда с кумулятивной выемкой без металлической облицовки снижает кумулятивный эффект, так как вместо металлической струи действует струя газообразных продуктов взрыва; однако при этом достигается значительно более сильное заброневое действие.

Ударное ядроправить | править код

Основная статья: Ударное ядро

Ударное ядро — компактная металлическая форма, напоминающая пест, образующаяся в результате сжатия металлической облицовки кумулятивного заряда продуктами его детонации.

Для образования ударного ядра кумулятивная выемка имеет тупой угол при вершине или форму сферического сегмента переменной толщины (у краёв толще, чем в центре). Под влиянием ударной волны происходит не схлопывание конуса, а выворачивание его «наизнанку». Полученный снаряд диаметром в четверть и длиной в один калибр (первоначальный диаметр выемки) разгоняется до скорости 2,5 км/с. Бронебойное действие ядра ниже, чем у кумулятивной струи, но зато сохраняется на расстоянии до 1000 калибров. В отличие от кумулятивной струи, состоящей лишь из 15 % массы облицовки, ударное ядро образуется из 100 % её массы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector