Динамит: история создания физические и химические качества, описание и классификация

Содержание:

Содержание

Тетранитропентаэритрит

Наряду гексогеном и октогеном, классикой взрывчатых веществ считают трудно произносимый тетранитропентаэритрит, который чаще называют тэном. Однако из-за высокой чувствительности он так и не получил широкого применения. Дело в том, что для военных целей важна не столько взрывчатка, которая разрушительнее других, сколько – та, которая при этом не взрывается от любого прикосновения, то есть с низкой чувствительностью.

Особенно придирчиво к этому вопросы относятся американцы. Именно они разработали натовский стандарт STANAG 4439 для чувствительности взрывчатки, которая может использоваться в военных целях. Правда, это произошло уже после череды тяжелейших инцидентов, в числе которых: взрыв склада на американской базе ВВС «Бьен-Хо» во Вьетнаме, стоивший жизни 33 техникам; катастрофа на борту авианосца «Форрестол», в результате которой было повреждено 60 самолетов; детонация в хранилище авиационных ракет на борту авианосца «Орискани» (1966 года) тоже с многочисленными жертвами.

Солнце как красный гигант

Что такое динамит

Классические цилиндрические динамитные брикеты

Динамит — это взрывчатое вещество, представляющее собой бризантную смесь на базе нитроглицерина и твердого абсорбента. Выполняется в твердой форме, благодаря кинематографу широкую известность получили цилиндрические брикеты. Также известны динамитные шашки, которые выглядят по-разному в зависимости от изготовителя.

Кроме абсорбента динамит может содержать и другие вещества. В этом вопросе химический состав материала отличается в зависимости от его применения. Это относится и к процентному содержанию нитроглицерина — чем его больше, тем сильнее взрыв динамита. При этом возрастает и нестабильность соединения, что осложняет транспортировку и применение динамита.

Достоинства и недостатки

Самолет Ан-2 «Кукурузник»: характеристики, фото, видео

характеристики

Физические свойства

Кусочки тротила

Тринитротолуол может иметь две различные модификации ( полиморфизм ), которые можно различить по цвету. Стабильная моноклинная форма образует светло-желтые игольчатые кристаллы, плавящиеся при 80,4 ° C. Метастабильная орторомбическая форма образует оранжевые кристаллы. При нагревании до 70 ° C переходит в моноклинную форму. Соединение очень плохо растворяется в воде, умеренно растворяется в метаноле (1%) и этаноле (3%), но легко растворяется в эфире , этилацетате (47%), ацетоне , бензоле , толуоле (55%) и пиридине . Обладая низкой температурой плавления 80,4 ° C, TNT можно плавить в водяном паре и разливать в формы. Соединение можно перегонять в вакууме. Согласно Антуану, функция давления пара получается из log 10 (P) = A− (B / (T + C)) (P в барах, T в K) с A = 5,37280, B = 3209,208 и C = -24,437 дюймов. температурный диапазон от 503 К до 523 К. Соединение выдерживает постоянный нагрев до 140 ° С. Выделение газа начинается выше 160 ° C. Начиная с 240 ° C, происходит дефлаграция с сильным образованием сажи. TNT ядовит и может вызывать аллергические реакции при попадании на кожу. Придает коже яркий желто-оранжевый цвет.

Параметры взрыва

Тротил — одно из самых известных, химически однородных, т.е. состоящих только из одного компонента, взрывчатых веществ. Как и все гомогенные взрывчатые вещества, TNT обязан своей взрывоопасностью внутренней химической нестабильности и образованию гораздо более стабильных газообразных продуктов во время взрыва. Горючее, необходимое для взрыва ( восстановитель в виде атомов углерода) и окислитель ( окислитель в виде нитрогрупп), содержатся в самой молекуле TNT. Химически говоря , при взрыве в внутримолекулярной очень быстром и экзотермическом ходе окислительно — восстановительной реакции , вызванной детонационным начинается. В результате получаются более стабильные и низкоэнергетические продукты z. B. азот , двуокись углерода, метан, окись углерода и цианистый водород . Последние могут возникать из-за недостаточного содержания кислорода в молекуле.

Если вначале воспламенилось достаточное количество вещества, высвободившаяся энергия поддерживает реакцию, и все количество вещества вступает в реакцию. Реакция протекает в очень быстрой и узкой реакционной зоне, через которую вещество бежит как волна . При использовании мощных взрывчатых веществ скорость этой зоны реакции достигает нескольких тысяч метров в секунду, т.е. превышает внутреннюю скорость звука. Выделяющаяся энергия и образование газов в качестве продуктов реакции приводят к чрезвычайно резкому повышению давления и температуры, что объясняет эффективность взрывчатых веществ.

Важными параметрами безопасности взрыва являются:

  • Теплота взрыва : 3725 кДж кг -1 (H 2 O (л)) , 3612 кДж кг -1 (H 2 O (г))
  • : 975 л кг -1
  • Скорость детонации : 6900 м / с (плотность: 1,6 г / см 3 )
  • Выпуклость свинцового блока : 30 см 3 / г
  • Температура дефлаграции : 300 ° C
  • Чувствительность к удару : 15 Нм (1,5 км / мин)
  • Чувствительность к трению : нет реакции до 353 Н (36 кПа)
  • Предельный диаметр при испытании стальной гильзы : 5 мм.

Химические и физические свойства ВВ

Тротил представляет собой кристаллы разных оттенков желтого или коричневого цветов, реже бесцветные. Плотность зависит от состояния, так:

  • 1,663 г/см3,плотность кристаллов;
  • 1,54-1,59 г/см3 плотность литого вещества.

Боевые качества тринитротолуола:

  • от 4103 кДж/кг до 4605 кДж/кг теплота взрыва;
  • 6950 м/с скорость детонации;
  • 16 мм бризантность по методу Гесса;
  • 3,9 мм бризантность методом Касса;
  • 730 л/кг объем выделения газа при взрыве;
  • 285 мл фугасность.

После 15 лет хранения состав становится более взрывоопасен при внешних воздействиях, о чем необходимо помнить в случае обнаружения целых боеприпасов времен Великой Отечественной войны.

ВВ не растворяется в воде, а так же не изменяет своих качеств после смачивания. Имеется активная реакция со спиртовыми и водяными щелочными растворами. На вкус горький.

Под воздействием Солнца тротил темнеет, до темно-коричневого цвета. Интересно, что в отличие от прочих взрывчаток, тол не реагирует на внешнее воздействие. Можно ударить по нему молотком, можно выстрелить в емкость с тринитротолуолом, его можно даже плавить. Последний пункт стал наиболее притягательным для военных и гражданских, связанных с взрывчаткой.

Поскольку горит тол при температуре выше 290 °C, его можно аккуратно довести до температуры плавления 80,35°C.

Под воздействием огня толовая масса начинает гореть, как правило, огнем желтого цвета и выделяя черный коптящий дым. Отметим, что исключение составляет порошкообразное ВВ с некоторыми примесями, делающее взрывчатку более нестабильной.

Общие «взрывные» качества

Подрыв шашки тринитротолуола может быть гарантированно произведен с помощью детонатора или запала. Как было отмечено, обладающее большим запасом стабильности вещество непросто подорвать «как в кино», выстрелом или даже поджогом.

Что же произойдёт, если подорвать, к примеру, 1 килограмм тротила. Взрыв, то есть мгновенная химико-физическая реакция, протечет за одну стотысячную долю секунды. Газ, образование и расширение которого и дает основную фугасную составляющую взрыва и взрывной волны, увеличиться до объема в 700 литров. Основным поражающим фактором будет взрывная волна и соответствующее изменение давления.

Виды виз в Германию и особенности их получения

«Вести борьбу с танками и самоходными орудиями неспособны»

Комплекс вооружения

Вооружение ПРДК «Грачонок»:

  • Одна МТПУ — морская тумбовая пулеметная установка с пулеметом КПВТ калибром 14.5 мм. Крупнокалиберный танковый пулемет Владимирова применяют для стрельбы по надводным, надземным целям, а так же по низколетящим целям противника. Пулемет способен на поражение групповых целей находящихся на расстоянии до 2 км и до 1,5 км по высоте, однако опытный пулеметчик способен поразить цель и на большем удалении, все зависит от его квалификации, индивидуальных способностей, состояния самого пулемета и применяемых боеприпасов. На сегодняшний день является самым мощным в мире из всех крупнокалиберных пулеметов, он легко подобьет практически любой военный вертолет. Но при этом на море, если не рассматривать большие военные корабли, пулемет представляет опасность только для небронированных или легкобронированных плавсредств, например тех, которые используют для высадки противника.
  • Переносной зенитно-ракетный комплекс «Игла-1» и/или «Верба» — 4 единицы. «Игла-1» применяется в случае воздушных атак для поражения низколетящих целей на догонных или встречных курсах, а так же в условиях применения ложных тепловых помех. Усовершенствованная головка самонаведения, благодаря своей чувствительности может отличить настоящую цель от тепловой ловушки. Реагирует комплекс на высокие температуры, например выхлоп двигателя самолета, где температура достигает порядка 900 градусов.

Устроен комплекс таким образом, что ракета никогда не прилетит прямо в цель, специальный датчик отклоняет ее чуть в сторону, например, она не взорвется в выхлопе двигателя, как самой горячей точке, а нацелится чуть в сторону – на борт самолета, чтобы при взрыве создать большее количество повреждений. После выстрела ракета вылетает не сразу, датчик удерживает цель, в эти секунды ведется расчет скорости и направления полета мишени и ракета летит чуть вперед к месту встречи. Если ракета не достигла цели, то через 17 секунд происходит самоуничтожение. Уязвимым местом данного комплекса считается невозможность захватить цель, находящуюся по направлению к солнцу. Дальность поражаемых целей до 5,2 км, высота – 3,5 км.

Благодаря простоте в эксплуатации и небольшим размерам, «Игла» применяется для стрельбы одним человеком. На сегодняшний день этот комплекс все же уступает по своим возможностям некоторым новым разработкам, поэтому продолжением ее конструктивного развития служит новый ПЗРК «Верба», который отличается дальностью полета — порядка 6 км и на высоту около 4,4 км. «Верба» поражает беспилотники и крылатые ракеты. Способна обнаружить цель на расстоянии до 80 км, подать звуковой сигнал оператору и произвести все необходимые расчеты для боевой готовности. С 2014 года ПРДК «Грачонок» комплектуют и «Иглами» и «Вербами».

  • Ручной двуствольный противодиверсионный гранатомёт ДП-64 «Непрядва» калибром 45 мм. Его вес около 10 кг, имеет 2 ствола. Поражение цели возможно на глубине до 40 м с радиусом 14 м. Применяется при нападении подводных диверсантов. Для боевого использования гранатомет заряжается двумя гранатами. Первый выстрел – это сигнальная граната СГ-45, которой обозначается цель на воде, ведь там нет других ориентиров, она всплывает на поверхность воды и горит красным факелом. Затем по нему производится стрельба фугасными боеприпасами ФГ-45. Может использоваться в закрытых помещениях. На экспорт это оружие никогда не уходило, выпускалось небольшими партиями для вооружения корабельно-катерного состава.
  • Малогабаритный дистанционно-управляемый противодиверсионный гранатометный комплекс 98У (ДП-65) калибром 55 мм. Применяется для защиты от нападений подводных диверсантов. Имеет 10 стволов, масса установки 132 кг. Совместно с гидроакустической станцией «Анапа» способен в автоматическом режиме обнаружить цель на расстоянии до 400 метров (при благоприятных условиях до 500 м), обеспечивает наведение комплекса на цель и ее ведение вплоть до уничтожения. Поражает на глубине до 40 м в радиусе 16 м. При залповом огне по заранее обнаруженной цели зона поражения увеличивается во много раз. Возможно дистанционное управление гранатометом с расстояния до 100 м и одновременное подключение, и поочередное использование 4 гранатометов с одного пульта. При отказе системы «Анапа», как ориентир используется сигнальная ракета, горящая красным факелом. Установка применяется в умеренно-холодных и тропических широтах. Наводится на цель в вертикальной и горизонтальной плоскости. Несмотря на всю свою боевую мощь, гранатомет имеет один недостаток, в результате работы двигателей гранатомета в радиусе 30 м образуется опасная зона, в которой нельзя находится людям, все установки должны быть защищены термостойкими кожухами.

С грозным оружием катера могут справляться не только подготовленные специалисты. Особое требование для малочисленного экипажа «Грачонка» — это взаимозаменяемость. ПРДК «Грачонок» проекта 21980 многофункционален, а несколько таких катеров в состоянии противостоять крупным боевым кораблям. Но все же его главной задачей на сегодняшний день остается противодиверсионная служба в акваториях важных объектов, а так же патрулирование во время проведения крупных мероприятий, например, таких как Олимпиада в Сочи в 2014 году.

Наука и изобретения

Из Франции Нобель направляется в Соединенные Штаты для совместной работы в лаборатории американского изобретателя шведского происхождения Джона Эриксона, который разработал военный корабль «Монитор», участвовавший в гражданской войне северян и южан. Ученый занимался также изучением свойств солнечной энергии. Молодой ученик под руководством мастера проводит самостоятельные химические и физические опыты.

Химик Альфред Нобель

Вернувшись в Стокгольм, Нобель не останавливается на достигнутом. Химик работает над поисками активного вещества, уменьшающего взрывоопасность тринитрата глицерина. В результате одного эксперимента, который проводился на заводах Нобелей в Стокгольме, 3 сентября 1864 года произошел взрыв. Авария унесла жизни нескольких человек, в том числе и младшего брата Эмиля. На момент катастрофы молодому человеку едва исполнилось 20 лет. Отец не пережил утрату, слег после инсульта и не вставал уже до смерти.

Через месяц после трагедии Альфреду удалось получить патент на нитроглицерин. После этого инженер запатентовал создание динамита, детонатора желатинового динамита и других взрывчатых веществ. Преуспел ученый и в разработке приборов хозяйственного назначения: холодильного аппарата, парового котла, газовой горелки, барометра, водомера. Химик сделал 355 изобретений в области биологии, химии, оптики, медицины, металлургии. 

Нобель первый разработал химический состав искусственного шелка и нитроцеллюлозы. Каждое изобретение ученый популяризировал с помощью лекций с демонстрациями возможностей прибора или вещества. Такие презентации инженера-химика пользовались известностью среди неискушенной публики, коллег и друзей Нобеля.

Динамит изобрел Альфред Нобель

Нобель увлекался написанием литературных трудов, художественных книг. Отдушиной химика были стихи и проза, сочинению которых ученый передавался в свободное от работы время. Одним из спорных произведений Альфреда Нобеля стала пьеса «Нимезида», которая на долгие годы была запрещена к изданию и постановке церковными служителями, и лишь в 2003 году, ко дню памяти ученого, она была поставлена силами Стокгольмского драматического театра.

Пьеса Альфреда Нобеля “Немезида”

Альфред интересовался наукой, философией, историей и литературой. Друзьями Нобеля были знаменитые художники, писатели, ученые, государственные деятели того времени. Нобеля часто приглашали на приемы и королевские обеды. Изобретатель состоял в почетном членстве многих европейских академий наук: Шведской, Английской, Парижской, Упсальского университета. В его послужном списке числятся французские, шведские, бразильские, венесуэльские ордена и награды. 

Семья Нобелей испытывала денежные трудности, связанные с постоянными тратами на проведение опытов. Но в конечном итоге братья приобрели пакет акций Бакинского нефтяного месторождения и разбогатели.

Альфред Нобель в последние годы

На Международном конгрессе мира, который состоялся в Париже в 1889 году, Нобель выступал с собственными лекциями. Это вызвало у некоторых участников мероприятия сарказм. В голове многих передовых деятелей мира не укладывалось, как может появляться на миротворческом собрании человек, изобретший орудие убийства и войны. В прессе Альфреда называли «король убийств», «миллионер на крови», «спекулянт взрывчатой смертью». Такое отношение к ученому расстраивало его и чуть не надломило.

Отмена строительства

Биография

Будущий изобретатель динамита Альфред Нобель родился в Стокгольме (Швеция) 21.10.1833. Он был четвертым сыном Эммануила и Каролины Нобель. Эммануил был инженером, который женился на Каролине Андриетте Альзель в 1827 г. У пары было восемь детей, из которых только Альфред и трое братьев достигли зрелого возраста. В детстве Нобель часто болел, но с раннего возраста проявлял живую любознательность. Он интересовался взрывчатыми веществами и выучился основам инженерного дела у своего отца. Отец тем временем терпел неудачи в различных коммерческих предприятиях, пока в 1837 г. не переехал в Санкт-Петербург, где стал успешным производителем мин и инструментов.

В бою.

Как сделать в домашних условиях

В таких бункерах хранились динамитные материалы

Изготовление динамита в домашних условиях при грамотном подходе не отличается сложностью, а в некоторых случаях безопаснее, чем изготовление пороха. Несмотря на это подобное производство проводить не рекомендуется.

Во-первых, чтобы сделать динамит, требуется нитроглицерин

Получить его можно и самостоятельно, однако, неосторожное хранение и использование чревато самыми трагическими последствиями. Данное вещество в чистом виде крайне нестабильно и требовательно к температуре

Во-вторых, техника безопасности не допускает изготовление нитроглицерина и динамита в жилом районе. Это относится и к опытам с ними

Не допускается и наличие посторонних людей, а также иных факторов, способных отвлечь внимание

Также следует учитывать и намеренные искажения рецептов. Многие источники в интернете, включая википедию, не всегда правильно приводят порядок действий, соотношение, технику безопасности. Все это в лучшем случае приводит к неудачным опытам, в худшем — к подрыву.

Применение динамита

А. Нобель запатентовал динамит с целью хозяйственного применения. С его помощью делались тоннели в горах, прорывались каналы, расчищались русла рек и дно заливов, велись горнорудные работы во многих странах, преобразуя ландшафт на благо человека. Это приносило Нобелю огромные доходы, он строил новые мануфактуры по производству динамита и к началу 1880 года владел двадцатью фабриками.

В скором времени динамит стал применяться и в военных целях. Первое использование в 1870 году в войне между Францией и Пруссией показало его силу и огромные перспективы для военных кампаний. Динамит стал повсеместно использоваться для разрушения и смерти. А. Нобель также получал немалые деньги с каждой партии произведенного для убийств динамита.

Рекомендации

  1. ^
  2. SCHUCK & Солман (1929), стр. 101.
  3. Патент США 234489выданный Морзе 16 ноября 1880
  4. ^ . Архивировано из 21 марта 2012 года . Проверено 9 июня 2012 года .
  5. ChemViews. . Взгляды химии . Журнал ChemViews . Дата обращения 6 мая 2017 .
  6. Карлос Лопес Химено, Эмилио Лопес Химено, Франсиско Хавьер Айяла-Карседо, Бурение и взрывные работы в горных породах , переведенный Ивонной Виссер де Рамиро из Manual de perforación y voladura de rocas (1987), Геолого-технологический институт Испании (Instituto Tecnológico de Espan). ~ а), Тейлор и Фрэнсис, Лондон и Нью-Йорк, 1995, ISBN 90-5410-199-7 
  7. . Ассоциация химической и смежной промышленности .
  8. . 30 июня 2006 года архивация с на 30 июня 2006 . Проверено 9 июня 2012 года .
  9. . Электронная библиотека ЕНТ . 8 мая 1911 г.
  10. J. Köhler, R. Meyer, A. Homburg: Explosivstoffe . Zehnte, vollständig überarbeitete Auflage. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2008, ISBN 978-3-527-32009-7 . 
  11. Гиббс, Т.Р. и Пополато, А. Данные о взрывоопасных свойствах LASL. Лос-Аламосская национальная лаборатория , Нью-Мексико. USDOE , 1980 год.
  12. . Uxoinfo.com . Проверено 9 июня 2012 года .
  13. Ледгард, Джаред (2007). . ISBN

Шрапнель в Энциклопедическом словаре:

Новое сверхмощное взрывчатое вещество синтезируют в американских лабораториях

Каждое новое поколение пытается перещеголять поколения предыдущие в том, что называется начинкой для адских машинок и другого оружия, другими словами – в поисках мощного взрывчатого вещества. Казалось бы, эпоха взрывчатки в виде пороха понемногу уходит в историю, однако поиски новых взрывчатых веществ не прекращаются. Чем меньше масса взрывчатого вещества, и чем больше его поражающая сила, тем лучшим оно представляется военным специалистам. Активизировать поиски такого взрывчатого вещества диктует робототехника, а также использование небольших ракет и бомб большой поражающей силы на БПЛА.

Естественно, что идеальное с военной точки зрения вещество вряд ли вообще будет когда либо обнаружено, но вот недавние разработки говорят о том, что нечто близкое к такому понятию получить всё же можно. Под близостью к идеальности здесь понимается стабильное хранение, высокая поражающая сила, небольшой объем и легкая транспортировка. Не нужно забывать, что цена такого взрывчатого вещества тоже должна быть приемлемой, иначе создание на его основе оружия может просто опустошить военный бюджет той или иной страны.

Разработки уже долгое время идут вокруг использования химических формул таких веществ, как тринитротолуол, пентрит, гексоген и ряд других. Однако в полной мере новинок «взрывная» наука предложить может крайне редко. Именно поэтому появление такого вещества как гексантирогексаазаизовюрцитан (название – язык сломаешь) можно считать настоящим прорывом в своей области. Чтобы не ломать язык, ученые решили дать этому веществу более удобоваримое название – CL-20. Это вещество впервые было получено еще около 26 лет назад – в далеком уже 1986 году в американском штате Калифорния. Его особенность заключается в том, что плотность энергии в этом веществе пока максимальная в сравнении с другими веществами. Высокая энергетическая плотность CL-20 и малая конкуренция при его производстве приводят к тому, что стоимость такой взрывчатки сегодня просто астрономическая. Один килограмм CL-20 стоит около 1300 долларов. Естественно, что такая цена не позволяет использовать взрывчатый агент в промышленных масштабах. Однако уже вскоре, считают эксперты, цена этой взрывчатки может существенно упасть, так как есть варианты по альтернативному синтезу гексантирогексаазаизовюрцитана.

Если сравнивать гексантирогексаазаизовюрцитан с самым эффективным на сегодняшний день взрывчатым веществом, применяемым в военных целях (октогеном), то стоимость последнего составляет около ста долларов за кг. Однако именно гексантирогексаазаизовюрцитан проявляет большую эффективность. Скорость детонации CL-20 составляет 9660 м/с, что на 560 м/с больше, чем у октогена. Плотность CL-20 также выше, чем у того же октогена, а значит, и с перспективами у гексантирогексаазаизовюрцитана тоже должно быть всё в порядке.

Одним из возможных направлений в применении CL-20 сегодня считают беспилотники. Однако здесь есть проблема, потому что CL-20 очень чувствителен к механическим воздействиям. Даже обычная тряска, которая вполне может произойти с БПЛА в воздухе способна вызвать детонацию вещества. Чтобы избежать взрыва самого беспилотника специалисты предложили использовать CL-20 в интеграции с пластиковым компонентом, который будет снижать уровень механического воздействия. Но как только такие эксперименты провели, оказалось, что гексантирогексаазаизовюрцитан (формула С6Н6N12О12) сильно теряет свои «убойные» свойства.

Получается, что перспективы у этого вещества огромные, но вот за два с половиной десятилетия им так никто и не сумел разумно распорядиться. Но эксперименты продолжаются и сегодня. Американец Адам Матцгер работает над совершенствованием CL-20, пытаясь изменить форму этой материи.

Матцгер решил использовать кристаллизацию из общего раствора для получения молекулярных кристаллов вещества. В итоге у них вышел вариант, когда на 2 молекулы CL-20 приходится 1 молекула октогена. Скорость детонации этой смеси находится между скоростями двух указанных веществ по отдельности, но при этом новое вещество гораздо стабильнее самого CL-20 и эффективнее октогена.

Чем ни самая эффективная взрывчатка в мире?..

Разработка

В начале 60-х годов в Тульском ГНИИ шли исследовательские работы по созданию системы с увеличенными количеством взрывчатого вещества в снаряде и дальностью стрельбы. Также предусматривалась высокая скорость передвижения в районе 70 км/час, достаточная проходимость и маленькое время готовности к стрельбе.

В 1967 году была закончена научно-исследовательская работа по созданию новой РСЗО, после чего приступили к научно-конструкторским работам.

Разработка велась в тульском «Сплаве» под руководством Ганичева. Характеристики будущей реактивной системы залпового огня заметно превосходили БМ-21 «Град».

С 1972 года конструкторы приступили к испытаниям новинки на полигоне и её доработке. В 1975 году РСЗО 9К57 «Ураган» поступила на вооружение советской армии.

Богатый отшельник

Альфред Нобель был человек замкнутый, недоверчивый, склонный к резким перепадам настроения. Он был одинок и никогда не был женат. В лаборатории в течение 18 лет у него работал один ассистент, а к канцелярской работе он вообще никого не допускал, к личному секретарю у него были слишком высокие требования. Один из самых богатых людей Европы, владелец около ста заводов, корпораций и синдикатов умер от кровоизлияния в мозг. В одном из последних своих писем он напишет: «Болезнь сердца задержит меня в Париже, по крайней мере, на несколько дней до тех пор, пока доктора не придут к единому мнению относительно моего лечения. Разве не ирония судьбы, что мне прописали принимать нитроглицерин!».

Динамит

История пластичных взрывчатых веществ

Девятнадцатый век стал настоящим «звездным часом» для химиков, которые занимались разработкой новых видов взрывчатых веществ. В 1867 году Альфредом Нобелем был запатентован динамит, который можно назвать первым пластичным взрывчатым веществом.

Первый вид динамита был изготовлен путем смешивания нитроглицерина с кизельгуром (кремниевая земля). Взрывчатое вещество получилось довольно мощным, имело приемлемый уровень безопасности (по сравнению с нитроглицерином) и обладало консистенцией теста.

Во время Второй мировой войны в Германии было разработано пластичное взрывчатое вещество гексопласт, которое состояло из смеси гексогена (75%), динитротолуола, тротила и нитроцеллюлозы. Позже американцы «позаимствовали» этот состав и начали его серийное производство под наименованием С-2.

В Великобритании первое пластичное взрывчатое вещество появилось еще до начала ПМВ, оно называлось PE-1 и использовалось для проведения взрывных работ. РЕ-1 состоял из 88% гексогена и 12% нефтяного масла. Позже этот состав был улучшен, в него добавили эмульгатор лецитин. Под наименованием РЕ-2 эта взрывчатка активно использовалось англичанами в период Второй мировой войны. Причем она находилась на вооружении специальных подразделений Великобритании, возможно именно поэтому пластичная взрывчатка стала в общественном сознании обязательным атрибутом диверсанта.

В 50-е годы англичане создали еще один вид ПВВ – РЕ-4. Причем эта разработка получилась настолько хорошо, что находится на вооружении английской армии и сегодня. В его состав входит: 88% гексогена, 11% специальной смазки DG-29 и эмульгатор. Данное взрывчатое вещество получилось весьма удачным – недорогим, надежным и довольно мощным. РЕ-4 используется для проведения взрывных работ, а также для снаряжения некоторых видов боеприпасов.

В США начали производить пластичную взрывчатку во время Второй мировой войны. Первым американским ПВВ стала взрывчатка С-1, аналогичная по составу английской РЕ-2. Чуть позже она была несколько модифицирована до С-2, а затем и С-3. Все эти ПВВ в качестве взрывчатого компонента использовали гексоген, отличались лишь пластификаторы.

В 1967 года была запатентована пластичная взрывчатка С-4, которая позже стала практически синонимом ПВВ. С-4 весьма успешно применялась во Вьетнаме, в настоящее время существует несколько классов этой взрывчатки, они отличаются друг от друга количеством гексогена.

С использованием С-4 во Вьетнаме связано несколько курьезных историй. Поначалу применение этого взрывчатого вещества привело к частым случаям тяжелых отравлений среди американских солдат. Дело в том, что они пытались использовать куски С-4 вместо привычной для американцев жвачки. Гексоген, входящий в состав С-4, является сильным ядом, он и вызывал отравления. После этого в инструкцию к С-4 был внесен пункт о том, что жевать пластит запрещено.

Вторая группа несчастных случаев была связана с попытками военнослужащих использовать С-4 в качестве топлива для приготовления пищи. Пластит не взрывался, но пары гексогена, попав вместе с дымом в пищу, также приводили к отравлениям. После этого в инструкциях к взрывчатке появился еще один пункт: «Запрещено использовать для приготовления пищи».

Следует отметить, что сегодня на вооружении американской армии находится большое количество разновидностей пластичной взрывчатки. Они отличаются и по взрывному компоненту, и по пластификаторам.

Первой советской пластичной взрывчаткой, которую начали выпускать массово, стала ПВВ-4. Этот пластит состоит из 80% гексогена, 15% смазочного масла и 5% стеарата кальция. Она появилась примерно в конце 40-х годов, однако в войска практически не поступала.

В 60-е годы в СССР был создан еще один вид пластичной взрывчатки – ПВВ-5А, который был полным аналогом американской С-4. Эту взрывчатку использовали для снаряжения мин МОН и динамической брони для танков.

В тот же период для систем разминирования была создана пластиковая взрывчатка ПВВ-7 с повышенным уровнем фугасности.

Долгое время пластичная взрывчатка считалась в СССР секретной, поэтому в строевые части она почти не поступала. Ситуация изменилась только с началом войны в Афганистане.

Нефть, оружие, богатство

Братья Нобеля, Людвиг и Роберт, тем временем разработали недавно открытые месторождения нефти близ Баку (ныне в Азербайджане) у Каспийского моря и сами стали очень богатыми людьми. Продажи по всему миру взрывчатых веществ, а также участие в компаниях братьев в России принесли Альфреду огромное состояние. В 1893 г. изобретатель динамита заинтересовался военной промышленностью Швеции, а в следующем году купил чугуноплавильный завод в Бофорсе, недалеко от Вермланда, который стал центром известной фабрики вооружений. Кроме взрывчатки, Нобель придумал много других вещей, таких как искусственный шелк и кожа, и в целом он зарегистрировал более 350 патентов в различных странах.

Первые шаги в творчестве

Зародился этот коллектив в 1998 году . Его основал сын одного из самых известных саксофонистов города Сочи. Илья Зудин в Москву подался не просто так. Уже тогда он представлял электронно-музыкальный проект под названием Sun City. Окончив музыкальное училище своего родного города, он имел опыт игры не только в джазовом оркестре, но и в рок-группе. Также неплохим опытом стала работа на различных радио. Ведение клубных программ помогло ему понять интересы широкой публики.

Но свои музыкальные интересы он никогда не предавал. Музыка в стиле регги позволяла ему качественно расслабляться, и его мысли могли полностью направляться в сторону творчества. Кроме того, он увлекался различными house-направлениями. Именно широта музыкальных вкусов сделал творчество Ильи Зудина знаменитым.

Скоротечность эпох

В XIX веке изобретение Альфреда Нобеля произвело революцию в горнодобывающей промышленности. По словам Белина, добывать полезные ископаемые при помощи пороховых зарядов было проблематично и, главное, небезопасно. Пришедший на смену пороху динамит применяли не одно десятилетие. Но в какой-то момент и он стал устаревать и его заменили более продвинутыми технологиями.

«В РФ динамит не применяется из-за опасности хранения, транспортировки и применения. Сегодня мир работает на аммиачно-селитряных ВВ и так называемых эмульсионных взрывчатых веществах, у которых гарантированный и регулируемый срок взрывчатых характеристик. С их помощью можно сделать, например, так, чтобы заряд был опасен в течение недели. После определённого срока его боевые свойства сходят на нет, — рассказал Белин, — и перевозится не взрывчатое вещество, а эмульсионная матрица. Взрывчатые характеристики приобретаются после заряжания в скважины, камеры, шпуры и т. д.».

Динамит иногда использовали и в военном деле, но неохотно и с осторожностью. Виной всему чувствительность взрывчатки: она могла запросто взорваться при неправильном хранении, простреле пулей или в артиллерийском снаряде

Главный редактор журнала «Арсенал отечества», полковник запаса Виктор Мураховский отметил в беседе с RT, что в качестве боеприпаса динамит практически не применялся.

«Такой элемент, как тротил, и взрывчатые вещества на его основе появились довольно быстро. Но в военных целях динамит был не слишком удобен, — сказал Мураховский. — Во время войны его применяли разве что на этапах проведения инженерных работ: при возведении укреплений или, наоборот, расчистке территорий. Он известен как промышленное взрывчатое вещество, а не как военное».

В некоторых странах динамит в ограниченных количествах производят и по сей день. Его выпускают, например, в Финляндии и США. В Соединённых Штатах производством занимается всего одна компания. Динамит, как правило, выпускается в виде «патронов» разного размера, наполненных пластичным или порошкообразным взрывчатым веществом. По-прежнему динамит используют в горном деле или при сносе зданий.

Легенда о влюбленных

«Слоеные скалы» вблизи Чертова озера

Давным-давно в одной богатой семье росла девушка Сулушаш, и полюбила она Алтая — молодого человека, служившего у них прислугой. Родители девушки противились этой связи, поэтому молодые решили сбежать. Им взялся помочь Кайсар — друг Алтая.

Так они и сделали. Не один день трое молодых людей, скрываясь ото всех, удалялись все дальше и дальше от родного дома. И однажды они очутились в очень красивой горной местности, где были и скалы, и озера, и много-много всяких животных. Беглецы решили остановиться здесь. Ночевали они в пещере, днем юноши охотились и ловили птиц, а Сулушаш ждала их.

Однажды Алтай на одной очень высокой скале увидел гнездо беркута и решил залезть туда. Он рассуждал так: если в гнезде яйца — он возьмет их для еды, а если птенцы — заберет хотя бы одного, чтобы воспитать его для охоты. Но юноше не повезло — он сорвался с утеса, упал и разбился насмерть. В это же время Сулушаш увидела приближающегося к ней крупного хищника, испугалась и, стараясь спастись, также сорвалась с обрыва и утонула в озере. Вернувшийся с охоты Кайсар не нашел в пещере своих друзей и пошел их искать. Вскоре он увидел видневшееся сквозь толщу воды тело утонувшей девушки и лежащего на камнях погибшего друга. Не перенеся такой трагедии, Кайсар бросился с обрыва. И озеро стали величать Чертовым озером.

Невидимая стража: как подводный спецназ охраняет ВМФ России

Причины возникновения и основные источники

Первый мусор на околоземных орбитах появился с началом космической эры в 50-х годах XX столетия, когда на орбиту были доставлены первые спутники. Дальнейшее покорение ближнего космоса неизменно увеличивало количество мусора на околоземных орбитах.

Весь космический мусор имеет земное происхождение, однако сам по себе он неоднороден. Наименьшую долю в числе движущихся по орбите объектов имеют действующие космические аппараты (не более 6%). Все остальные объекты не представляют ценности и являются в полной мере мусором. Среди них порядка 20% — вышедшие из строя спутники и геостационарные объекты, 17% — разгонные блоки и отработавшие ступени ракет, оставшиеся примерно 55% — различные отходы космической деятельности и результаты столкновений и взрывов.

Больше всех засоряют космос Россия, США и Китай

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector