Церн

Содержание:

Примечания[править | править код]

  1. ↑ . NashaGazeta.ch (30 сентября 2015). Дата обращения: 23 апреля 2020.
  2. ↑  (недоступная ссылка). Дата обращения: 22 мая 2015.
  3.  (англ.). UNESCO (5 December 2013). Дата обращения: 9 декабря 2013.
  4. . Дата обращения: 14 января 2014.
  5. . cds.cern.ch. Дата обращения: 5 мая 2017. (недоступная ссылка)
  6. .
  7. . Объединенный институт ядерных исследований. Дата обращения: 21 июня 2017.
  8.  (англ.). international-relations.web.cern.ch. Дата обращения: 21 июня 2017.
  9. . unian.net (29 августа 2013). Дата обращения: 9 сентября 2013.
  10. (28 февраля 2019).
  11. .
  12. ↑  (англ.) (недоступная ссылка) (5 July 2001). Дата обращения: 23 апреля 2020.
  13. Edward J. Barsotti.  (англ.). inis.iaea.org. Дата обращения: 23 апреля 2020.
  14. Ben Segal.  (англ.). Ben Segal’s Home Page. CERN (April 1995). Дата обращения: 16 февраля 2015.
  15. ↑ . Lenta.ru (30 июля 2015). Дата обращения: 23 апреля 2020.

Ссылки

Компьютерные технологии в ЦЕРН

Помимо открытий в области физики, ЦЕРН прославился тем, что в его стенах был предложен гипертекстовый проект Всемирная паутина. Английский учёный Тим Бернерс-Ли и бельгийский учёный Роберт Кайо, работая независимо, предложили в 1989 году проект связывания документов посредством гипертекстовых ссылок для облегчения обмена информации между группами исследователей, занимающихся проведением больших экспериментов на большом электрон-позитронном коллайдере (LEP). Первоначально проект использовался только во внутренней сети ЦЕРНа. В 1991 году Бернерс-Ли создал первые в мире веб-сервер, сайт и браузер. Однако Всемирная паутина становится действительно всемирной только когда были написаны и опубликованы спецификации URI, HTTP и HTML. 30 апреля 1993 года CERN объявил, что Всемирная паутина будет свободной для всех пользователей.

Ещё до создания Всемирной паутины, в начале 1980-х CERN стал пионером в использовании технологии интернета в Европе.

В конце 1990-х годов CERN стал одним из центров развития новой компьютерной сетевой технологии грид. CERN присоединился к разработкам сети GRID, решив, что подобная система, поможет сохранить и оперативно обработать огромный поток данных, которые появятся после запуска большого адронного коллайдера (LHC). Под руководством ЦЕРНа, пригласившего в качестве партнёров Европейское космическое агентство и национальные научные организации Европы, создаётся крупнейший сегмент сети системы — DataGRID.

В настоящее время CERN входит в крупный грид-проект Enabling Grids for E-sciencE (EGEE) и, также, развивает собственные грид-сервисы. Этим занимается специальное отделение, связанное с коллайдером — LHC Computing Grid.

CERN также является одной из двух точек обмена интернет-трафиком в Швейцарии CINP (CERN Internet Exchange Point).

В CERN собирают и используют свой собственный дистрибутив операционной системы Linux — Scientific Linux.

Сотрудники ЦЕРН Джейсон Стокман, Энди Йен и Вэй Сун создали популярный сервис веб-почты с шифрованием ProtonMail.

Компьютерные технологии в ЦЕРН

Помимо открытий в области физики, ЦЕРН прославился тем, что длительное время был одним из передовых инженерных центров, создававших принципиально новые разработки и стандарты в сфере компьютерных технологий что привело к созданию интернета.

Создание и сопровождение промышленных стандартов в сфере управления оборудованием

Созданный в 1961ом году в рамках ЦЕРН Европейский Комитет по cтандартам в ядерной электронике (ESONE) разработал и внедрил такой широко известный стандарт крейтовых систем как КАМАК. Так же он, совместно с американскими исследователями, принял активное участие в разработке предназначенного для замены стандартов NIM и КАМАК стандарта FASTBUS,

Впоследствии, ESONE сосредоточился на поддержке использования уже существующих стандартов и поддержке и обеспечении их взаимодействия с другими промышленными системами, такими как VMEbus, сменив расшифровку своей аббревиатуры с European Standards On Nuclear Electronics на European Studies On Norms for Electronics.

Всемирная паутина

В стенах ЦЕРН был предложен гипертекстовый проект Всемирная паутина. Английский учёный Тим Бернерс-Ли и бельгийский учёный Роберт Кайо, работая независимо, предложили в 1989 году проект связывания документов посредством гипертекстовых ссылок для облегчения обмена информации между группами исследователей, занимающихся проведением больших экспериментов на большом электрон-позитронном коллайдере (LEP). Первоначально проект использовался только во внутренней сети ЦЕРНа. В 1991 году Бернерс-Ли создал первые в мире веб-сервер, сайт и браузер. Однако Всемирная паутина становится действительно всемирной только когда были написаны и опубликованы спецификации URI, HTTP и HTML. 30 апреля 1993 года CERN объявил, что Всемирная паутина будет свободной для всех пользователей.

Ещё до создания Всемирной паутины, в начале 1980-х CERN стал пионером в использовании технологии интернета в Европе.

Грид и суперкомпьютерные вычисления

В конце 1990-х годов CERN стал одним из центров развития новой компьютерной сетевой технологии грид. CERN присоединился к разработкам сети GRID, решив, что подобная система, поможет сохранить и оперативно обработать огромный поток данных, которые появятся после запуска большого адронного коллайдера (LHC). Под руководством ЦЕРНа, пригласившего в качестве партнёров Европейское космическое агентство и национальные научные организации Европы, создаётся крупнейший сегмент сети системы — DataGRID.

В настоящее время CERN входит в крупный грид-проект Enabling Grids for E-sciencE (EGEE) и, также, развивает собственные грид-сервисы. Этим занимается специальное отделение, связанное с коллайдером — LHC Computing Grid.

Иная активность в компьютерной сфере

CERN также является одной из двух точек обмена интернет-трафиком в Швейцарии CINP (CERN Internet Exchange Point).

В CERN собирают и используют свой собственный дистрибутив операционной системы Linux — Scientific Linux.

Сотрудники ЦЕРН Джейсон Стокман, Энди Йен и Вэй Сун создали популярный сервис веб-почты с шифрованием ProtonMail.

Пистолет Браунинг 1903

Пистолет Форт-9

Основные текущие проекты

Большой адронный коллайдер

Основная статья: Большой адронный
коллайдер

Основным проектом в данное время является Большой адронный
коллайдер (LHC), протон-протонный (также рассчитан на ускорение
тяжёлых ионов) коллайдер с максимальной проектной энергией 14 ТэВ.
Четыре основных детектора, в том числе два многоцелевых,
расположены в четырёх подземных шахтах. Многоцелевыми
экспериментами являются ATLAS и CMS. Специализированный детектор
для изучения B-физики — LHCb. Детектор для изучения физики
тяжёлых ионов и нового состояния вещества (кварк-глюонной
плазмы) — ALICE. Два менее масштабных, но также очень важных,
эксперимента — TOTEM и LHCf. TOTEM предназначен для измерения
полного сечения упругих и дифракционных процессов на LHC, а
LHCf — для изучения сверхблизких к оси пучка ускорителя частиц
и применения этих сведений в физике космических лучей.

На данный момент происходит ввод коллайдера в эксплуатацию.
Европейская организация ядерных исследований назначила дату первого
эксперимента на 5 сентября 2008 года. Тестовый запуск Большого
адронного коллайдера транслировался в прямом эфире европейского
информационного телеканала «Евроньюс». 10 сентября
2008 г. — первый пучок успешно преодолел 27-километровую
петлю.

CERN: Art Sculpture with Physics and CERN history inscribed on it! (In front of the Globe of Science — LauraGilchrist4 @ Flickr

Рассматриваются варианты будущей модернизации ускорителя и
детекторов.

CERN, the museum MicroCosm — OskarH @ Web

CLIC

Ведутся исследования по возможности создания линейного
ускорителя электронов после LHC на энергию около 3 ТэВ. Одним из
возможных вариантов является Компактный Линейный Коллайдер (CLIC,
Compact LInear Collider), проект которого разрабатывается в ЦЕРНе в
тесном сотрудничестве с научными учреждениями 36 стран мира.

Ускорители

Схема ускорительного комплекса ЦЕРНа.

Ускорительный комплекс ЦЕРНа состоит из шести главных ускорителей:

  • Linac2, Linac3. Два линейных ускорителя низкоэнергетических частиц. Один используется для инжекции протонов, другой — тяжёлых ионов. К 2020 году добавится Linac4, который будет разгонять отрицательно заряженные ионы водорода.
  • PS Booster — увеличивает энергию частиц из линейных ускорителей для передачи в PS.
  • PS (Proton Synchrotron), 28 ГэВ протонный синхротрон.
  • Протонный суперсинхротрон(Super Proton Synchrotron; SPS) диаметром кольца 2 км, запущенный в 1971 году. Применялся для экспериментов с фиксированной мишенью, как протон-антипротонный коллайдер. Далее использовался для ускорения электронов и позитронов в LEP.
  • ISOLDE (Isotope Separator On-line), установка для исследования нестабильных ядер. Запущена в 1967 году. Предварительное ускорение частиц происходит в PS Booster.
  • Большой адронный коллайдер (LHC, Large Hadron Collider).

Возможные будущие ускорители.

ЦЕРН совместно с группами по всему миру изучает две основные концепции будущих ускорителей: линейный электронно-позитронный коллайдер с новой концепцией ускорения для увеличения энергии (CLIC) и более крупную версию LHC, проект, который в настоящее время называется Future Circular Collider .

С ЧЕГО ВСЕ НАЧИНАЛОСЬ?

Обычно в науке есть два типа людей — теоретик и практик. Теоретик подает идеи или теории, а практик пытается их подтвердить или опровергнуть. Началось все с Демокрита, он во времена предшествующей нашей эре, уже был уверен, что все вокруг состоит из мелких частиц, которые он назвал греческим словом- atomos. На доказательство его теорий ушло много веков, прежде чем в XIV веке ученые смогли выяснить, что атом — это частица, которую можно расщепить и увидеть внутри нее ядро и электроны. А чуть позже, уже в конце XIV века физики доказали, что само ядро также состоит из частиц — протонов и нейтронов. Пара умных бельгийцев в середине XX века, а затем и Питер Хиггс предположили наличие неуловимой доселе частицы, называемой бозоном. На доказательство существования ушло 48 лет, она стала 13-ой по счету. Даже странно, что бозон называют «божественной частицей».

Поле бозонов Хиггса

В 60-х годах выяснилось, что все протоны и нейтроны также имеют центр. Сейчас в CERN на практике пытаются доказать, что и частицы имеют внутренние ядра. А еще работают над поисками антиматерии, теории большого взрыва. Только воссоздают ученые это в таких маленьких количествах, чтобы проводить исследования на частицах, которые существуют совсем недолго, а затем распадаются на миллионы других частиц. И ведь у каждой есть античастица, состоящая из антикатодов — ну просто ядерное Зазеркалье.

ORANGE-СОВЕТ от сотрудников CERN

Если вы встретите «антисебя», не пожимайте руки! При встрече две противоположно заряженные частицы производят 100% энергии. Звучит, казалось бы, неубедительно. Но чтобы понять последствия такой встречи, знайте, что если соединить 1 грамм материи и 1 грамм антиматерии, то энергии хватит на то, чтобы стереть Женеву с лица Земли. 

В CERN пытаются найти антиматерию, античастицы и любое анти. Вешают не в граммах, конечно, а в очень-очень маленьких количествах. Их дотошно создают, тщательно сравнивают с другими, наблюдают, смотрят, есть ли между ними какая-либо разница, которая заставила материю остаться, а антиматерию исчезнуть. Эксперименты CERN проводит даже на космической станции — ищут анти-беглянку во Вселенной.

ПОПРОБУЙТЕ ОСОЗНАТЬ: Когда вы оглядываетесь вокруг себя, вы видите материю. А куда делась антиматерия? Этого пока никто не знает. Материя, которую мы знаем и видим покрывает только 5% всей галактики. А из чего сделаны 95% — полная загадка. Темная ли это материя, темная ли это энергия. Теорий множество.

Я уверена, что большинство идей для голливудских сценариев блокбастеров типа «Интерстеллар» рождаются в головах тех, кто побывал на экскурсии в CERN. Когда слушаешь рассказы ученых, у людей творческих начинаются фантазийно-космические девиации. «Мы знаем, что та энергия, скрепляющая протоны и нейтроны, раньше этого не делала, — говорит один из физиков, — и вселенная была похожа на суп, в котором плавали все частицы независимо друг от друга, как в плазме. То, над чем стоит подумать, почему эта энергия стала скреплять их?» 

Радиация на территории CERN в пределах обычной нормы. Во время экскурсии по городку доза, которая может быть получена сравнима с той,  что подвергаются пилоты на рейсе Женева — Нью-Йорк и обратно. Опаснее работать лыжным инструктором в Альпах, чем в CERN. Тем не менее, каждый сотрудник, имеющий доступ к агрегатам обязан носить дозиметр. На три зимних месяца работу коллайдера останавливают — электричество в Швейцарии зимой стоит в три раза дороже. Во время технического отключения проверяют все системы коллайдера.

ПОПРОБУЙТЕ ОСОЗНАТЬ: Свет от далеких галактик может дойти до земли тогда, когда их уже не будет существовать.

«Удав», сын СР-1

Разработанный конструкторами ЦНИИточмаша П. Сердюковым и И. Беляевым пистолет СПС (он же «Гюрза», он же 6П53 по индексу ГРАУ) изначально был больше сориентирован на запросы ФСБ/ФСО, чем армии. Представителей этих ведомств новизна и малая распространенность патрона 9х21 мм не отпугивала. Скорее наоборот, их вполне устраивало, что «их» пистолет будет самым мощным и пробивным, а у других этого не будет. На вооружение бывших «комитетчиков» СР-1 был принят еще в 1996 году (армия сделала это только в 2003-м). Однако, несмотря на длительный процесс доводки, СР-1 так и не стал по-настоящему надежным и распространенным пистолетом.

ПМ_1

Пистолет СР-1

Фото: commons.wikimedia.org/Vitaly V. Kuzmin

У первых серий слишком тугие и острые клавиши автоматических предохранителей на спусковом крючке и тыльной стороне рукояти вызывали нарекания у стрелков. Да и примененная схема работы автоматики была не самой простой и повышала стоимость. В результате ЦНИИточмаш взялся за разработку нового оружия.

Еще в 2016 году тогдашний гендиректор ЦНИИточмаша Дмитрий Семизоров практически слово в слово повторил нынешнее интервью Бакова, заявив: «Пистолет нового поколения «Удав» готовится к госиспытаниям, которые должны завершиться до конца этого года».

Правда, в тот момент это никакой сенсации не вызвало. Да и, как мы видим, воз и ныне там.

ПМ_1

Пистолет «Удав»

Фото: kalashnikov.ru/Михаил Дегтярёв

Судя по внешнему виду, пистолет «Удав» не содержит каких-либо «не имеющих аналогов» элементов конструкции. Это оружие, сконструированное по классической «браунинговской» схеме с качающимся стволом и запиранием за окно выброса гильзы. Можно, пожалуй, сказать, что «Удав» — аналог немецкого Heckler&Koch USP (со скидкой на отечественное качество изготовления).

То есть новый пистолет ЦНИИточмаша будет габаритным, мощным, узкоспециальным и дорогим оружием, под малораспространенный патрон. Возможно, оно найдет свою нишу в частях спецназа, но заменить массовый служебный компакт ему вряд ли удастся.

How to cancel a booking

The Reception must be informed in writing of any cancellation of a booking:

  • at least 48 hours before scheduled arrival (including weekends) for individual reservations.
  • at least 7 days before scheduled arrival (including weekends) for group reservations.

All individual reservations can be cancelled without any penalty until 48 hours before scheduled arrival. Otherwise, the first night will charged on the credit card given as a guarantee.

Group reservations must be cancelled at least 7 days before scheduled arrival. Otherwise, the first night will charged on the credit card given as a guarantee.

WITH or WITHOUT a CERN computer account
CERN web booking (if your original request has been done with the CERN web booking)
Cancel a booking
CERN.Hostel@cern.ch or by phone: +41 22 767 4481

Болезни листьев

But Stephen Hawking is worried

Although it may require some mental gymnastics to wrap one’s brain around exactly what the CERN scientists are attempting to achieve in their underground lab, the average layman may instinctively understand that such an experiment may be wrought with unforeseeable pitfalls. Stephen Hawking, the eminent physicist, seems to agree.

“The God particle found by CERN could destroy the universe,” Hawking wrote in the preface to a book, Starmus, a collection of lectures by scientists. The Higgs Boson could become unstable at very high energy levels and have the potential to trigger a “catastrophic vacuum decay which would cause space and time to collapse and… we would not have any warning to the dangers,” he continued.

Hawking is not the only voice in the scientific wilderness predicting possible catastrophe if CERN continues in the atomic fast lane. Astrophysicist Neil de Grasse Tyson told Eugene Mirman on his Star Talk radio program that the experiment could literally cause the planet to “explode.”

“Ask yourself: How much energy is keeping it together? Then you put more than that amount of energy into the object.” Tyson was confident of the result: “It will explode.”

In late 2008, when CERN was first firing up the engines on its atom-smashing machine, Otto Rossler, a German professor at the University of Tubingen, filed a lawsuit against CERN with the European Court of Human Rights, on the grounds that the facility could trigger a mini black hole that could get out of control and annihilate the planet. The Court tossed out Rossler’s request, but he nevertheless succeeded in generating heated discussion on the possible dark side of the experiment.

Ускорители

Схема ускорительного комплекса ЦЕРНа

Карта LHC вместе с протонным суперсинхротроном

Ускорительный комплекс ЦЕРНа состоит из шести главных ускорителей:

  • Linac2, Linac3. Два линейных ускорителя низкоэнергетических частиц. Используются для инжекции частиц в протонный синхротрон (Proton Synchrotron, PS). Один используется для инжекции протонов, другой — тяжёлых ионов. К 2020 году добавится Linac4, который будет разгонять отрицательно заряженные ионы водорода.
  • PS Booster, увеличивает энергию частиц из линейных ускорителей для передачи в PS.
  • PS (Proton Synchrotron), 28 ГэВ протонный синхротрон. Запущен в 1959 году.
  • Протонный суперсинхротрон (Super Proton Synchrotron; SPS) диаметром кольца 2 км, запущенный в 1971 году, изначально имел энергию 300 ГэВ, но пережил несколько улучшений. Применялся для экспериментов с фиксированной мишенью, как протон-антипротонный коллайдер. Далее использовался для ускорения электронов и позитронов в LEP.
  • ISOLDE (Isotope Separator On-line), установка для исследования нестабильных ядер. Запущена в 1967 году. Предварительное ускорение частиц происходит в PS Booster.
  • Большой адронный коллайдер (LHC, Large Hadron Collider)

История

Вид внутри здания 40, в котором находятся множество офисов учёных, работающих в коллаборациях CMS и ATLAS

После успеха международных организаций в урегулировании послевоенных проблем, ведущие европейские физики считали, что подобная организация необходима и для физических экспериментальных исследований. Этими пионерами были Рауль Дотри, Пьер Оже и Лев Коварски во Франции, Эдоардо Амальди в Италии и Нильс Бор в Дании. Кроме объединения европейских учёных подобная организация была призвана разделить возрастающую стоимость физических экспериментов в области физики высоких энергий между государствами-участниками. Луи де Бройль официально предложил создать европейскую лабораторию на Европейской культурной конференции (Лозанна, Швейцария, ).

Следующий толчок был сделан американским нобелевским лауреатом Исидором Раби в июне 1950 года на пятой Общей конференции ЮНЕСКО во Флоренции (Италия), где он предложил «помочь и поддержать создание региональных исследовательских лабораторий для увеличения международного сотрудничества». На межправительственной встрече ЮНЕСКО в Париже в декабре 1951 года, было принято решение о создании Европейского совета по ядерным исследованиям. Двумя месяцами позже (1952 год) 11 стран подписало соглашение о создании временного Совета, тогда и возникло название ЦЕРН.

На третьей сессии временного Совета в октябре 1952 года Женева (Швейцария) была выбрана для размещения будущей лаборатории. В июне 1953 года в кантоне Женева прошёл референдум, на котором 2/3 проголосовавших согласились на размещение научного центра. Конвенция Совета была подписана постепенно 12 (). 29 сентября 1954 года соглашение подписали Франция и Германия, родилась Европейская организация по ядерным исследованиям, Совет распался, но французский акроним CERN сохранился.

Директора ЦЕРН

См. en:List of Directors General of CERN

  • 1952—1954 Амальди, Эдоардо
  • 1954—1955 Блох, Феликс
  • 1955—1960 de:Cornelis Bakker
  • 1960—1961, 1971—1975 Адамс, Джон Бертрам
  • 1961—1965 Вайскопф, Виктор Фредерик
  • 1966—1970 Грегори, Бернард Пауль
  • в 1971—1980 гг. было два со-директора — Адамс, Джон Бертрам и:
    • 1971—1975 Ентчке, Виллибальд
    • 1976—1980 Ван Хов, Леон
  • 1981—1988 Шоппер, Хервиг Франц
  • 1989—1993 Карло Руббиа
  • 1994—1998 en:Christopher Llewellyn Smith
  • 1999—2003 Майани, Лучано
  • 2004—2008 en:Robert Aymar
  • 2009—2015 Рольф-Дитер Хойер
  • 2016—н. в. Джанотти, Фабиола

Эксперименты и установки

Фундаментальные исследования

В ЦЕРН исследуются структура материи и фундаментальные взаимодействия между элементарными частицами, то есть фундаментальный вопрос о том, из чего состоит Вселенная и как она работает. В больших ускорителях частиц частицы ускоряются почти до скорости света и сталкиваются. Затем траектории частиц, образовавшихся во время столкновений , реконструируются с использованием большого количества различных детекторов частиц , что, в свою очередь, позволяет делать выводы о свойствах столкнувшихся и вновь созданных частиц. Это связано с огромными техническими усилиями при производстве и эксплуатации систем, а также с высокими требованиями к производительности компьютера для оценки данных. По этой же причине ЦЕРН управляется и финансируется на международном уровне.

Полномочия

Крупный проект БАК

Как говорится в пресс-релизе исследования на сайте ЦЕРН, во время пробегов частиц на БАКе физики тщательно изучали редчайшие распады парных кварков (B-мезонов). Оказалось, что В-мезоны распадаются на разные количества электронов и мюонов, что противоречит предсказаниям Стандартной модели. Напомним, что мюон (в Стандартной модели физики) является неустойчивой элементарной частицей с отрицательным электрическим зарядом.

Необходимо также отметить, что обнаруженные аномалии во время распада B-мезонов сегодня являются одним из основных направлений исследований крупного проекта БАК – экспериментальной группы LHCb.

Стандартная модель физики элементарных частиц предсказывает, что распады с участием различных лептонов, таких как в исследовании LHCb, должны происходить с одинаковой вероятностью. Лептонами физики называют электрон, мюон и таон, которые должны взаимодействовать с окружающим миром одинаково, с поправкой на различия в массе. Однако сравнив, как часто происходят подобные распады, участники LHCb обнаружили, что пары мюонов возникали значительно чаще, чем электроны и позитроны. Но чем можно объяснить такое несоответствие?

Интересные факты

Подать объявление

ОТХОЖДЕНИЕ В ПАНИКУ

Радость открытия последней, недостающей в Стандартной модели частицы — бозона Хиггса, омрачили пессимистические высказывания некоторых физиков. Если доказанная масса частицы именно такова, как утверждается. То тогда Вселенная должна быть размером с футбольный мяч. Теоретикам придется потрудится и выдвинуть другие идеи, почему Вселенная необъятна. Кое-кто не преминул спекулировать — искусственное получение частицы утверждали некоторые ученые, могут вызвать цепную неконтролируемую реакцию, которая вызовет «черную дыру», что поглотит все живое. Но даже если и такой сценарий не случится, Вселенная может фактически лопнуть как мыльный пузырь, превратившись в холодную безмолвную пустоту.

Альтернативная теория физиков предполагает, что если все вокруг пронизано бозонами Хиггса, то все это вокруг нестабильно и может быть сметено какой-нибудь космической случайностью к чертям. Вернее вместе с чертями. А вот если бы масса частицы была бы иной, с нашей Вселенной было бы все в порядке. Такого мнения, например, придерживается Стивен Хокинг в своей книге. Он предостерегает ученых, что подобные эксперименты могут вызвать (нет, не сатану) а миниатюрную «черную дыру», которая впрочем, поглотит планету Земля. На CERN был подан даже иск в Европейский суд по правам человека немецким профессором Отто Реслером с требованием прекратить темные эксперименты. Но представители CERN уверили судью и общественность, что даже если черная дыра и образуется, то ее существование продлится менее одной тысячной секунды. А за это время, вроде бы не должна она оперативно расправиться со всем сущным.

ORANGE-ФАКТ

CERN, по интересному стечению обстоятельств, построен точно в том месте, где древние римляне построили храм в честь Аполлона.  Название местной деревушки Poilly произошло от римского «Appolliacum». Люди, которые жили в древности неподалеку от храма, считали что именно здесь находятся ворота в подземный мир.

веб ссылки

Участники

Изначальные страны-участники, подписавшие соглашение в —1954 годах:

  • Бельгия Бельгия
  • Дания Дания
  • Германия Германия
  • Франция Франция
  • Греция Греция
  • Италия Италия
  • Норвегия Норвегия
  • Швеция Швеция
  • Швейцария Швейцария
  • Нидерланды Нидерланды
  • Великобритания Великобритания
  • Югославия Югославия

Изменения после 1954 года:

  • Австрия Австрия присоединилась в 1959 году
  • Югославия Югославия покинула организацию в 1961 году
  • Испания Испания присоединилась в , затем покинула в 1969 году и снова присоединилась в 1983 году
  • Португалия Португалия присоединилась в 1985 году
  • Финляндия Финляндия присоединилась в 1991 году
  • Польша Польша присоединилась в 1991 году
  • Венгрия Венгрия присоединилась в 1992 году
  • Чехия Чехия присоединилась в 1993 году
  • Словакия Словакия присоединилась в 1993 году
  • Болгария Болгария присоединилась в 1999 году
  • Израиль Израиль присоединился в 2013 году (принят официально 14.01.2014)
  • Румыния Румыния присоединилась в 2016 году

Бюджет 2009 года

Государство-член пожертвование млн. CHF млн. EUR
Германия Германия 19,88 % 218,6 144,0
Франция Франция 15,34 % 168,7 111,2
Великобритания Великобритания 14,70 % 161,6 106,5
Италия Италия 11,51 % 126,5 83,4
Испания Испания 8,52 % 93,7 61,8
Нидерланды Нидерланды 4,79 % 52,7 34,7
Швейцария Швейцария 3,01 % 33,1 21,8
Польша Польша 2,85 % 31,4 20,7
Бельгия Бельгия 2,77 % 30,4 20,1
Швеция Швеция 2,76 % 30,4 20,0
Норвегия Норвегия 2,53 % 27,8 18,3
Австрия Австрия 2,24 % 24,7 16,3
Греция Греция 1,96 % 20,5 13,5
Дания Дания 1,76 % 19,4 12,8
Финляндия Финляндия 1,55 % 17,0 11,2
Чехия Чехия 1,15 % 12,7 8,4
Португалия Португалия 1,14 % 12,5 8,2
Венгрия Венгрия 0,78 % 8,6 5,6
Словакия Словакия 0,54 % 5,9 3,9
Болгария Болгария 0,22 % 2,4 1,6

Обмен валюты : 1 CHF = 0,659 EUR (25/05/2009)

Страны, имеющие статус ассоциированного члена в процессе вступления в ЦЕРН:

  • Сербия Сербия
  • Украина Украина
  • Турция Турция

Страны и организации, имеющие статус наблюдателя:

  • Европейская комиссия
  • Индия
  • Россия Россия
  • США США
  • Канада Канада
  • ЮНЕСКО
  • КНР КНР
  • ОИЯИ (взаимный статус)

В настоящее время участниками ЦЕРНа является 21 государство, при этом страны-наблюдатели активно участвуют в проектах ЦЕРНа. В 2012 году Россия подала заявку на вступление в ЦЕРН в качестве ассоциированного участника, но отозвала её в 2018 году.

Украина в 2013 году также начала процесс вступления в ЦЕРН в качестве ассоциированного участника.

КАКОВА МИССИЯ CERN?

CERN не производит электричество, не продает его в обход крупных компаний, не изготавливает военное оборудование. Вcе это запрещено конвенцией CERN. Как же его сотрудники гарантируют, что какие-либо их исследования не будут использованы в военной промышленности?! Для того, чтобы избежать демагогии на эту тему каждое исследование выкладывается в сеть и доступно для прочтения любому желающему совершенно бесплатно. Чтобы ничто не имело стратегической ценности.

 

Первая и главная миссия — совершенствование знаний человечества. Вторая — объединение сотни ученых по всему миру в рамки сотрудничества. То, что исследуют в CERN невозможно делать в одиночку. CERN открыт для молодых кадров, которые только что обзавелись дипломом и не имеют никакого профессионального опыта. В CERNE еще и обучают. Каждый год более 500 студентов получают образование в области физики, инженерии, технологий и международного права.

Европейский Центр ядерных исследований и Всемирная паутина

В ЦЕРНе занимаются не только элементарными частицами. Многие годы он был и остается крупнейшим и одним из самых передовых инженерных центров в мире. Особенно весомы достижения ученых ЦЕРНа в области информатики и вычислительной техники.

Первый компьютер появился здесь  в 1958 году, а уже через четыре года компания IBM специально для ЦЕРНа создала вычислительную машину, способную записывать данные на магнитные ленты и подключаться непосредственно к детекторам.

Ученые из ЦЕРНа стояли у истоков создания Всемирной паутины

В конце 80-х годов именно в ЦЕРНе были заложены принципы работы интернета. В то время уже получили широкое распространение персональные компьютеры, и у сотрудника ЦЕРНа Тима Бернерса-Ли появилась идея создания локальной сети для обмена информацией между ними.

Для этого он предложил использовать систему из трех составляющих:

  • веб-страницы с данными, представленными в виде гипертекста (текста, содержащего ссылки на другие документы;
  • веб-сервер – компьютер, имеющий доступ в Сеть, где находятся веб-страницы;
  • веб-браузер – специальная программа для просмотра гипертекстовых документов на вычислительной машине пользователя.

Годом позже Тим Бернерс-Ли и Роберт Кайлиау разработали первый рабочий прототип подобной системы, который использовался в ЦЕРНе для доступа к научной документации, справочной службе и местной новостной сети. Первоначально ее предполагалось использовать только для научных исследований, но именно из этого проекта выросла «Всемирная Паутина» (World Wide Web). По-настоящему она стала массовой только после создания Бернесом-Ли спецификации URI, HTTP и HTML.

Автор статьи:
Никифоров Владислав

Пистолет Браунинг 1903

В поп-культуре

Линия трамвая 18 соединяет ЦЕРН с центром Женевы

  • В начале XXI века новую волну популярности ЦЕРНу принесла знаменитая книга-бестселлер Дэна Брауна «Ангелы и демоны». По сюжету книги, в ЦЕРНе был украден большой образец антивещества, при помощи которого злоумышленник задумал взорвать город-государство Ватикан.
  • В визуальной новелле Steins;Gate (Врата Штейна) ЦЕРН является жестокой организацией, основная цель которой — захват власти над всем миром, для реализации этой цели они работают над созданием машины времени, основным компонентом которой является БАК (Большой адронный коллайдер). По сюжету данного произведения, в будущем ЦЕРН удалось захватить весь мир и установить правление путём жёсткой диктатуры.
  • В ЦЕРН есть свой музыкальный клуб и даже филк-группа Les Horribles Cernettes.
  • В сериале «Южный парк» в эпизоде 1306 «Сосновое дерби» отец Стэна, чтобы помочь ему выиграть гонки, похищает из ЦЕРНа сверхпроводящий магнит. Во время заезда машинка внезапно ускоряется и выходит в космос, и при этом достигает так называемой «варп-скорости» (превышает скорость света).
  • ЦЕРН является одной из главных составляющих сюжетной линии игры дополненной реальности Ingress.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector