Жёлтый карлик

Ссылки[править | править код]

Историяправить | править код

  • S. S. Kumar, Low-Luminosity Stars. Gordon and Breach, London, 1969 — an early overview paper on brown dwarfs.
  • Kulkarni 1997 overview paper
  • The Columbia Encyclopedia

Деталиправить | править код

  • Проект «Астрогалактика». Справка. О коричневых карликах
  • A geological definition of brown dwarfs, contrasted with stars and planets (via Berkeley)
  • X-ray flare

Звёздыправить | править код

  • Cha Halpha 1 stats and history
  • A census of observed brown dwarfs (not all confirmed), ca 1998
  • Epsilon Indi Ba and Bb, a pair of brown dwarfs 12 ly away
  • Luhman et al., Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk

Строение и структура Солнца

Близость Солнца позволяет получить представление о его строении и структуре, получить данные о том, как работает этот естественный термоядерный реактор и какие в нем происходят процессы. Интересным будет разобрать структуру, которая состоит из следующих компонентов:

  • ядро;
  • зона лучистой энергии;
  • конвективная зона;
  • тахоклин.

Далее начинаются слои солнечной атмосферы:

  • фотосфера;
  • хромосфера;
  • протуберанцы.

Звезда не является твердым телом, ввиду того, что мы имеем дело с раскаленным газом, плотно сжатым в сферическую область. При таких температурах существование любого вещества в твердом виде физически невозможно. Яркий свет и тепло, излучаемые Солнцем, являются следствием тех же процессов, с которыми человек столкнулся при создании атомной бомбы. Т.е. материя под действием огромного давления и высоких температур преобразуется в энергию. Основным топливом является водород, который в составе Солнца составляет 73,5-75%, поэтому основным источником тепла является процесс термоядерного синтеза водорода, сосредоточенный главным образом в ядре, центральной части звезды.

Строение Солнца

Солнечное ядро составляет ориентировочно 0,2 солнечного радиуса. Именно здесь идут главные процессы, за счет которых Солнце живет и снабжает световой и кинетической энергией окружающее космическое пространство. Процесс переноса лучистой энергии от центра звезды к верхним слоям осуществляется в зоне лучистого переноса. Здесь фотоны, стремящиеся от ядра к поверхности, перемешиваются с частицами ионизированного газа (плазмой). За счет этого происходит обмен энергией. В этой части солнечного шара располагается особая зона – тахоклин, которая отвечает за образование магнитного поля нашей звезды.

https://youtube.com/watch?v=6ujOeQ5C4R0

Далее начинается самая масштабная область Солнца — конвективная зона. Эта область составляет почти 2/3 солнечного диаметра. Один только радиус конвективной зоны практически равен диаметру нашей планеты – 140 тыс. километров. Конвекция представляет собой процесс, при котором плотный и разогретый газ равномерно распределяется по всему внутреннему объему звезды по направлению к поверхности, отдавая тепло следующим слоям. Этот процесс происходит беспрерывно и его можно видеть, наблюдая за поверхностью Солнца в мощный телескоп.

На границе внутренней структуры и атмосферы звезды находится фотосфера — тонкая, всего 400 км глубиной, оболочка. Именно ее мы и видим при своих наблюдениях за Солнцем. Фотосфера состоит из гранул и неоднородна по своей структуре. Темные пятна сменяются яркими участками. Такая неоднородность связана с разным периодом остывания поверхности Солнца. Что касается невидимой части спектра поверхности нашего светила, то в этом случае мы имеем дело с хромосферой. Это плотный слой атмосферы Солнца, и его можно видеть только во время солнечного затмения.

Протуберанцы

Наиболее интересными солнечными объектами для наблюдения являются протуберанцы, которые по виду напоминают длинные волокна, и солнечная корона. Эти образования являются гигантскими выбросами водорода. Возникают протуберанцы и перемещаются по поверхности Солнца с огромной скоростью — 300 км/с. Температура этих петлей превышает отметку 10 тыс. градусов. Солнечная корона представляет собой внешние слои атмосферы, которые по толщине превышают диаметр самой звезды в несколько раз. Точной границы у солнечной короны нет. Ее видимая граница является только частью этого огромного образования.

Солнечная корона

Завершающим этапом солнечной активности является солнечный ветер. Этот процесс связан с естественным истечением звездного вещества через внешние слои в окружающее космическое пространство. Солнечный ветер в основном состоит из заряженных элементарных частиц — протонов и электронов. В зависимости от цикла солнечной активности скорость солнечного ветра может быть различной от 300 км в секунду до отметки в 1500 км/с. Эта субстанция распространяется по всей солнечной системе, оказывая влияние на все небесные тела нашего ближнего космоса.

Солнечный ветер

Какие виды звёзд существуют

Итак, выделим основные виды звезд:

  • Светила главной последовательности — на этом этапе они проводят до 90% всей своей жизни. Главным образом, основные термоядерные реакции связаны с горением водорода. В результате чего формируется гелиевое ядро.
  • Коричневые карлики — интересный тип субзвёздных объектов. В их ядре также протекают термоядерные реакции, но основе лежит горение лёгких элементов. Например, бора, лития, бериллия или дейтерия. Поэтому тепловыделение и излучение у подобных тел быстро заканчивается. Что, соответственно, приводит к их остыванию, а затем превращению в планетоподобные объекты.
  • Красные карлики отличаются долгой продолжительностью жизни, поскольку горение водорода в них проходит медленно. Вероятно, поэтому красных карликов больше других звёздных тел во Вселенной. Хотя из-за медленных процессов и слабого излучения, они не видны с нашей планеты без специальных приборов.
  • Красные гиганты образуются после того, как сгорит весь водородный запас, что приводит к гелиевой вспышке и расширению звезды.
  • Белые карлики имеют малую массу. Можно сказать, это остаток от красных гигантов, скинувших свою оболочку. При взрыве начинается процесс горения углерода и кислорода. Светило увеличивает атмосферные границы, быстро теряет газ и превращается в белый карлик.
  • Сверхгиганты — массивный тип светил, которые из-за происходящих внутри реакций быстро покидают стадию главной последовательности. Для них характерна низкая температура, но высокий показатель светимости.
  • Переменные звёзды — это те, у которых хотя бы раз за весь жизненный цикл изменялся блеск. Чаще всего это связано с внутренними процессами. Однако и внешние факторы могут повлиять на изменение блеска. К примеру, если звёздный свет пройдёт сквозь гравитационное поле.
  • Главная последовательность
  • Коричневый карлик
  • Проксима Центавра (красный карлик)
  • Белый карлик Сириус B
  • Голубой сверхгигант Ригель
  • Красный гигант и солнце

Помимо этого, выделяют и другие виды звезд:

  • Новые звёзды — это особый тип переменных, с достаточно резким изменением блеска. Собственно говоря, скачки светимости провоцируют вспышки тела с различными амплитудами.
  • Сверхновые — это те, которые на конечном этапе эволюции взрываются. Причем их взрыв или вспышка очень мощные.
  • Гиперновые или проще говоря, большие сверхновые звёзды. После того, как источники поддержания термоядерных реакций иссякают, происходит коллапс. Что интересно, сила и мощность их неминуемого взрыва превышает обычных сверхновых приблизительно в 100 раз.
  • LBV (Яркие голубые переменные) или переменные типа S Золотой Рыбы являются пульсирующими гипергигантами. Для них свойственны неправильные изменения блеска с колебаниями от 1 до 7 m. Правда, это очень редкие и недолго живущие звезды, которые всегда окружают туманности.
  • ULX (Ультраяркие рентгеновские источники) — космические объекты, обладающие сильным рентгеновским излучением. Их переменность может варьироваться от секунд до нескольких лет. Вероятно, что их источником излучения является чёрная дыра. На самом деле, мало изучены, редкие.
  • Нейтронные звёзды, на самом деле, представляют собой образования из нейтронов (нейтральных субатомных частиц). Поскольку эти частицы сильно сжимаются силами гравитации, то плотность светил также очень высокая. Между прочим, её часть сравнивают со средней плотностью атомного ядра. И это при том, что радиус нейтронных объектов составляет от 10 до 20 км, а масса равна примерно 1,5 солнечных масс.
  • Двойные звёзды или системы отличаются, главным образом, тем, что состоят их пары светил, связанных между собой силами гравитации. К удивлению, наша Галактика наполовину состоит именно из двойных звёзд.
  • Уникальные (объект Стефенсона-Сандьюлика) — это двойная затменная система звёзд. Один из компонентов представляет массивное светило с высокой температурой и светимостью, а другой небольшое тело (может быть нейтронным образованием или даже чёрной дырой). В результате взаимодействия компонентов производится сильнейшее рентгеновское излучение. На данным момент, к уникальным относится лишь одна система SS 433.
  • Взрыв гиперновой
  • Нейтронная звезда
  • Двойная звезда Сириус
  • Объект Стефенсона-Сандьюлика (SS 433)

Как видно, виды звёзд нашей Вселенной могут быть разные. Стоит отметить, что они отличаются друг от друга по своему звёздному размеру и массе, составу, температуре, расстоянию до нас и другим характеристикам. Но несмотря на это, среди всех небесных тел они носят гордое название — звезда.

Галерея

Охотничьи ружья: история развития от фитильных аркебуз до современных моделей

Проблема первичных красных карликов

Одна из загадок астрономии — слишком малое количество красных карликов, совсем не содержащих металлов. Согласно модели Большого взрыва, первое поколение звёзд должно было содержать только лишь водород и гелий (и совсем небольшое количество лития). Если в числе этих звёзд были красные карлики, то они должны наблюдаться сегодня, чего не происходит. Общепринятое объяснение заключается в том, что звезды с малой массой не могут сформироваться без тяжёлых элементов. Так как в лёгких звёздах протекают термоядерные реакции с участием водорода в присутствии металлов, то ранняя протозвезда с малой массой, лишённая металлов, не в состоянии «зажечься» и вынуждена оставаться газовым облаком до тех пор, пока не получит больше материи. Всё это служит поддержкой теории о том, что первые звёзды были очень массивными и вскоре погибли, выбросив большое количество металлов, необходимых для формирования лёгких звёзд.

Солнце – это планета или звезда?

Солнце – это звезда. Есть ряд критериев, согласно которым небесное тело может быть отнесено к разряду звезд или планет. Солнце соответствует именно тем характеристикам, которые присущи звездам.

Во все времена значение Солнца было очень велико, а его изучение и исследование всегда были главными направлениями в астрономии. Солнце – это самый большой объект Солнечной системы. К тому же Солнце занимает 99, 8% всей массы системы.

Абсолютно все космические тела Солнечной системы вращаются именно вокруг Солнца. Солнце намного больше Земли. Это относится и к его массе, и к его размерам. Диаметр Солнца составляет 1,3 миллиона километров, его вес – 1.989*10^30 килограммов, температура на его поверхности составляет 5800К, а период оборачивания Солнца вокруг своей оси составляет 25,4 дней.

На Солнце можно наблюдать протекание очень сложных процессов. К примеру, ученый Галилей еще в далеком 1610 году, наблюдая за Солнцем в телескоп, увидел на его поверхности темные пятна. С их помощью он сумел определить время и период оборачивания Солнца. Поверхность Солнца нельзя назвать спокойной, так как она постоянно бурлит, и при этом все вещества, из которых состоит Солнце, то опускаются, то поднимаются. Поэтому вся солнечная поверхность как будто покрыта зернами и гранулами.

Следует отметить, что размер этих зерен и гранул колеблется от 1 до 2 тысяч километров, а период их существования составляет всего лишь несколько минут. Солнечные пятна, открыты Галилеем, намного больше гранул – несколько сотен тысяч километров. К тому же они более устойчивые, чем гранулы, и могут просуществовать приблизительно месяц. Для Солнечных пятен характерен темный оттенок, а их температура составляет 3500К. Количество солнечных пятен возрастает в период солнечной активности, когда можно понаблюдать и за солнечными вспышками.

Солнечные вспышки – это очень сильные выбросы солнечной энергии с его поверхности. Они сопровождаются не только усиленным излучением некоторых участков Солнца, но и активными выбросами частиц, которые могут долетать до магнитного поля Земли, вызывая своим прилетом так званое возмущение, которое плохо сказывается на здоровье многих людей и работе приборов.

Солнце – планета гигант – состоит из внешнего светящегося слоя фотосферы, разреженного горячего газового слоя хромосферы и разреженной горячей короны. Температура в хромосфере достигает десятки тысяч градусов. Корону Солнца увидеть можно только при полном солнечном затмении.

Существует также такое понятие, как солнечный ветер. Это частицы, которые покидают Солнце и устремляются в пространство космоса. Солнечный ветер присущий Солнцу даже при великой солнечной силе гравитации. О существовании солнечного ветра многие ученые долго сомневались. Однако в 1959 году солнечный ветер был зафиксирован космическими аппаратами. До верхних слоев Земли достигают лишь отдельные частицы Солнечного ветра, так как основной поток частиц останавливается благодаря земельному магнитному полю. Частицы солнечного ветра, попадая в верхние слоя Земли, вызывают северное сияние.

Как установили многие современные ученые, источником солнечной энергии есть термоядерные реакции, в процессе которых легкие химические элементы превращаются в тяжелые элементы. Сегодня это превращение водорода в гелий. Водород составляет на сегодняшний день 70% всей массы Солнца, а гелий – лишь 28%. Эти термоядерные реакции могут протекать лишь при высокой температуре, которая находится в центре самого Солнца.

По мнению ученых, Солнце – это звезда, которая отличается от остальных звезд тем, что звезды находятся на большем расстоянии от Земли, чем само Солнце. Это было доказано с помощью спектрального анализа солнечного излучения и изучения его состава.

Видео: как устроено Солнце

Изучение солнечной активности

Одним из ученых, который принимал участие в проекте, стал немец Тимо Рейнхольд, работающий в Институте исследования Солнечной системы им. Макса Планка. По мнению специалиста, на протяжении девяти тысяч лет для нашей звезды были характерны регулярные и повторяющиеся колебания идентичной силы. В своей работе астрономы использовали все наблюдения за желтыми карликами, которые были зафиксированы в Млечном пути. Такой подход основан на том, что исследователям крайне сложно определить уровень активности и яркости Солнца в древний период.

Таким образом команда ученых проводила сравнительный анализ поведения различных желтых карликов, которые представлены в нашей галактике. В исследовании брали участие исключительно те космические объекты, которые своими характеристиками были схожи с Солнцем. К важным критериям отбора относились температурные параметры поверхности небесного тела, возраст, состав (кроме гелия и водорода), период вращения. Последний показатель считается особенно важным, так как от него зависит степень и возможности магнитного поля звезды. Напомню, что магнитное поле желтого карлика – движущая сила, которая ответственна за активность, колебания энергетических излучений.

Тимо Рейнхольд обратил внимание, что перечень звезд с информацией о периоде их вращения был составлен всего несколько лет назад. Такие данные основаны на работе космического телескопа «Кеплер», который был направлен в Космос американской космологической организацией НАСА

Благодаря его работе в 2009-2013 годах астрономы смогли изучить колебания яркости порядка 150 000 звезд, расположенных на экваторе собственного жизненного цикла.

Команда ученых для своего исследования отобрала исключительно те космические объекты, чей период вращения приблизительно равен двадцати-тридцати земным дням. Необходимо сделать уточнение, что Солнцу, чтобы сделать один оборот, необходимо 24,5 земных дня. Благодаря такому критерию в список для изучения попали только триста шестьдесят девять звезд, которые схожи с нашим Солнцем и другими фундаментальными параметрами.

Благодаря точному анализу изменения свечения таких звезд удалось определить, что солнечное излучение в период между активными и неактивными фазами в среднем менялось в пределах 0,07%. При этом идентичные параметры других звезд демонстрировали более существенные изменения. Ученые, работающие над проектом, отметили, что очень удивлены такому спокойному поведению Солнца в сравнении с другими аналогичными космическими объектами.

Астрономы также в научной работе уделили время на изучение около 2,5 тысячи звезд, период вращения которых не удалось определить космическому телескопу «Кеплер». В результате специалисты заметили уникальную закономерность: у этих небесных тел яркость менялась в несколько раз меньше, чем у звезд из списка «Kepler». Исследователи считают, что вполне возможно существуют еще и другие критерии, до сих пор не изученные человечеством, которые отличают объекты с известным и неизвестным периодом вращения.

Ответы на вопросы

  1. Чем отличается белый карлик от нейтронной звезды? Вся эволюция звезды основывается на первоначальной ее массе, от этого параметра и будет зависть ее светимость, продолжительность жизни и во что она превратится в конце. Для звезды массой 0,5-1,44 солнечной, жизнь закончится тем, что звезда расширится и превратится в красного гиганта, который сбросив свои внешние оболочки образует планетарную туманность оставит после себя лишь одно ядро, состоящее из вырожденного газа. Это упрощенный механизм того, как образуется белый карлик. Если масса звезды больше 1,44 массы Солнца (так называемый предел Чандрасекара, при котором звезда может существовать как белый карлик. Если масса будет превышать его, то она станет нейтронной звездой.), то звезда израсходовав весь водород в ядре начинает синтез более тяжелых элементов, вплоть до железа. Дальнейший синтез элементов, которые тяжелее железа, невозможен т.к. требует больше энергии чем выделяется в процессе синтеза и ядро звезды коллапсирует в нейтронную звезду. Электроны срываются с орбит и падают в ядро, там сливаются с протонами и в итоге образуются нейтроны. Нейтронное вещество весит в сотни и миллионы раз больше чем любое другое.
  2. Отличие белого карлика и пульсара. Все те же самые отличия что и в случае с нейтронной звездой, только стоит учитывать, что пульсар (а это и есть нейтронная звезда) еще и очень быстро вращается, десятки раз в секунду, а период вращения белого карлика составляет, на примере звезды 40 Eri B, 5 часов 17 минут. Разница ощутима!
  3. Из-за чего светятся белые карлики? Так термоядерные реакции уже не происходят все имеющееся излучение это тепловая энергия, так почему они светятся? По сути он медленно остывает, как раскаленное железо, которое сперва ярко белое, а затем краснеет. Вырожденный газ очень хорошо проводит тепло из центра и он остывает на 1% за сотни миллионов лет. Со временем остывание замедляется и он может просуществовать триллионы лет.
  4. Во что превращаются белые карлики? Возраст Вселенной слишком мал, для того чтобы могли образоваться, так называемые, черные карлики, конечной стадия эволюции. Так что видимых подтверждений у нас пока нет. На основе расчетов его остывания мы знаем лишь одно, что их продолжительность жизни, имеет поистине огромную, превышающую возраст Вселенной (13,7 млрд. лет) и теоретически составляющую триллионы лет.
  5. Существует ли белый карлик с сильным магнитным полем как у нейтронной звезды? Некоторые из них обладают мощными магнитными полями, гораздо сильнее, чем любые созданные нами на Земле. Например, сила магнитного поля на поверхности Земли составляет всего от 30 до 60 миллионных долей тесла, в то время как напряженность магнитного поля белого карлика может достигать 100 000 тесла.

    Но нейтронная звезда, обладает поистине сильным магнитным полем – 10*11 Тл и называется магнетаром! На поверхности некоторых магнетаров могут образовываться толчки, которые формируют колебания в звезде. Эти колебания часто приводят к огромным выбросам гамма-излучения магнетаром. Так, например, магнетар SGR 1900+14, который находится на расстоянии на 20 000 световых лет, в созвездии Орла, взорвался 27 августа 1998 г. Мощная вспышка гамма излучения была настолько сильной, что заставила выключить аппаратуру космического аппарата NEAR Shoemaker в целях ее сохранения.

Научно-популярный фильм о героях нашей статьи

Таинственные малыши

Красные карлики воистину уникальные звёзды. Их особая отличительная характеристика – это просто нереально долгий период жизни. 4,5 миллиарда лет назад, когда наша солнечная система ещё представляла из себя вихрь пыли и газа, и в её центре нерешительно вспыхивало Протосолнце, многие красные карлики уже сформировались и имели планеты. Наша звезда превратится со временем (примерно через 5 миллиардов лет) в красного гиганта, «сварив» в своей кроне Меркурий, Венеру и Землю. А затем, через 7…8 млрд. лет станет доживающим свой век звёздным «огарком» — белым карликом, а те же самые красные карлики за это время практически не состарятся и ещё миллиарды лет (а по некоторым предположениям – до триллиона лет) будут светить и светить…

Другим интереснейшим фактом из жизни красных карликов является их количество. Если бы мы могли невооружённым глазом видеть все небесные тела этого типа, так же, как видим более яркие звёзды, то небо для нас стало бы в пять раз светлее. Несмотря на то, что красные карлики с таким трудом даются открывателям, на них, по некоторым предположениям, приходится до 80% (!!!) всей звёздной массы вселенной.

Солнце белое?

Если пропустить солнечный свет через призму, он разложится на спектр, и мы увидим области разного цвета. То есть, солнечный свет состоит из электромагнитных волн всего видимого спектра, а свет мы воспринимаем именно как электромагнитные волны с разной длиной волны. Стеклянная призма преломляет их по-разному, поэтому видно их разделение. Вы знаете это из курса школьного физики.

В солнечном свете есть электромагнитные волны всего видимого спектра, от фиолетовых до красных. Все вместе они дают белый свет. На снимках, сделанных в космосе, когда Солнце попадает в кадр, видно, что оно именно белого цвета.

Да и как иначе, если оно излучает в самых разных диапазонах, и видимый свет – лишь малая часть излучения. Притом доля желтого света в нём не больше, чем других. При температуре поверхности в 5800 К Солнце и должно быть белым.

Литература и источники информации

Ссылки

  • ПЛ «Гепард» типа «Барс»
  • Список погибших в последнем походе подлодки «Гепард»
  • (ПЛ «Гепард»)
  • 1917 год гибель ПЛ «Гепард»
  • ГЕПАРД :: ТИП «БАРС»)
  • Википедия Подводные лодки типа «Барс»
  • Найдена затонувшая в 1917 году российская подлодка
  • ПЛ «Гепард» (типа «Барс»)

Литература

  • Подводные лодки типа «Барс» (И.Ф. Цветков. 1911-1942 гг. С.-Пб.: Издатель P.P. Муниров, 2007. — 112 с.).
  • Подводные лодки в Русском и Советском флоте (Г.М.Трусов, 1957 год издания).
  • Очерки по борьбе с подводными лодками (А.Травиничев, 1988 год издательства).
  • Русские подводные лодки часть первая (Г.М. Трусов 2006 год издательства).

Как увидеть

К сожалению, разглядеть систему (a-b) OGLE-TR-122 просто так не получится. Светимость этой парочки около 16 звёздных величин (напомним, невооружённый глаз способен различать звёзды до 6 з.в. включительно). Но и это не самое большое препятствие для наблюдений: OGLE-TR-122 – звезда южного полушария и лучшим местом для её наблюдений будет, к примеру, Австралия.

Её координаты для готовых туда поехать подготовленных любителей астрономии, владельцев хорошей оптики с возможностью наведения по азимуту:

  • прямое восхождение: 11ч 06м 51.99с
  • список маркированный: -60° 51′ 45.7″

Удачных наблюдений!

Срок полномочий

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector