Сколько лет солнцу?

Содержание

Содержание

Солнечный ветер и энергия солнечного света

В конце 1950-х гг. американский астрофизик Юджин Паркер пришел к выводу, что, поскольку газ в солнечной короне имеет высокую температуру, которая сохраняется с удалением от Солнца, он должен непрерывно расширяться, заполняя Солнечную систему. Результаты, полученные с помощью советских и американских космических аппаратов, подтвердили правильность теории Паркера.

В межпланетном пространстве действительно мчится направленный от Солнца поток вещества, названный солнечным ветром. Он представляет собой продолжение расширяющейся солнечной короны. Его в основном составляют ядра атомов водорода (альфа-частицы), а также электроны. Частицы солнечного ветра летят со скоростями несколько сотен километров в секунду, удаляясь от Солнца на многие десятки астрономических единиц — туда, где межпланетная среда Солнечной системы переходит в разреженный межзвездный газ. Вместе с ветром в межпланетное пространство переносится и солнечное магнитное поле.

Общее магнитное поле Солнца по форме линий магнитной индукции немного напоминает земное. Но силовые линии земного поля вблизи экватора замкнуты и не пропускают направленные к Земле заряженные частицы. Силовые линии солнечного поля, напротив, в экваториальной области разомкнуты и вытягиваются в межпланетное пространство, искривляясь подобно спиралям. Объясняется это тем, что силовые линии остаются связанными с Солнцем (как говорят — вмороженными), которое вращается вокруг своей оси.

Последние полупроводниковые разработки позволят создать солнечные батареи, которые смогут преобразовывать в электрический ток даже инфракрасный свет. Это повысит их эффектив ность до 50%

Солнечный ветер вместе с «вмороженным» в него магнитным полем формирует газовые хвосты комет, направляя их в сторону от Солнца. Встречая на своем пути Землю, солнечный ветер сильно деформирует ее магнитосферу, в результате чего наша планета обладает длинным магнитным «хвостом», также направленным от Солнца. Магнитное поле Земли чутко отзывается на обдувающие ее потоки солнечного вещества.

Электромагнитное излучение, приходящее от Солнца, подвергается в земной атмосфере строгому отбору. Проникают в нее видимый свет и ближнее ультрафиолетовое и инфракрасное излучения, а также радиоволны в сравнительно узком диапазоне (от сантиметровых до метровых). Все остальное излучение либо отражается, либо поглощается атмосферой, нагревая и ионизуя ее верхние слои.

Поглощение рентгеновских и жестких ультрафиолетовых лучей начинается на высотах 300–350 км; на этих же высотах отражаются наиболее длинные радиоволны, приходящие из космоса. При сильных всплесках солнечного рентгеновского излучения от хромосферных вспышек рентгеновские кванты проникают до высот 80–100 км от поверхности Земли, ионизуют атмосферу и вызывают нарушение связи на коротких волнах.

Мягкое (длинноволновое) ультрафиолетовое излучение способно проникать еще глубже, оно поглощается на высоте 30—35 км. Здесь ультрафиолетовые кванты разбивают на атомы (диссоциируют) молекулы кислорода (O2) с последующим образованием озона (O3). Тем самым создается непрозрачный для ультрафиолета «озонный экран», предохраняющий жизнь на Земле от гибельных лучей. Не поглотившаяся часть наиболее длинноволнового ультрафиолетового излучения доходит до земной поверхности. Именно эти лучи вызывают у людей загар и даже ожоги кожи при длительном пребывании на солнце.

Излучение в видимом диапазоне поглощается слабо. Однако оно рассеивается атмосферой даже в отсутствие облаков, и часть его возвращается в межпланетное пространство. Облака, состоящие из капелек воды и твердых частиц, значительно усиливают отражение солнечного излучения. В результате до поверхности планеты доходит в среднем около половины падающего на границу земной атмосферы света.

Ледники удерживают более 75% пресной воды. Если они растают, уровень мирового океана вырастет на 70 м. С 1961 по 1993 г. он поднимался на 1,8 мм ежегодно, с 1993 — на 3,2 мм

На Земле излучение поглощается сушей и океаном. Нагретая земная поверхность в свою очередь излучает в длинноволновой инфракрасной области. Для такого излучения азот и кислород атмосферы прозрачны. Зато оно жадно поглощается водяным паром и углекислым газом. Благодаря этим малым составляющим воздушная оболочка удерживает тепло.

В этом и заключается парниковый эффект атмосферы. Между приходом солнечной энергии на Землю и ее потерями на планете, в общем, существует равновесие: сколько поступает, столько и расходуется. В противном случае температура земной поверхности вместе с атмосферой либо постоянно повышалась бы, либо падала.

Поделиться ссылкой

Просто Новости

Солнечное излучение смертельно опасно

Ультрафиолетовое излучение подразделяется на три полосы: UVA, UVB и UVC.

UVA составляет около 95% ультрафиолетового излучения, достигающего поверхности Земли. Этот тип глубоко проникает в кожу и несет главную ответственность за преждевременное старение и образование морщин на коже, а также рак кожи.

UVB – большая часть этого типа ультрафиолетового излучения фильтруется озоновым слоем, прежде чем достигнет поверхности Земли. Этот тип излучения является более разрушительным, чем UVA, воздействуя на внешние слои кожи и вызывая солнечные ожоги, а также преждевременное старение, морщины и, в конечном итоге, рак кожи.

UVC является наиболее опасным видом ультрафиолетового излучения, но в основном он не может попасть на поверхность Земли через озоновый слой.

Похожие диссертации на СССР и Лига Наций

Атмосфера

Она устроена довольно сложно. Весь солнечный свет уходит в космос с ее нижнего уровня, который называют фотосферой. Основным источником света служит нижний слой фотосферы толщиной в 150 км. Толщина всей фотосферы составляет около 500 км. Вдоль этой вертикали температура плазмы снижается от 6400 до 4400 К.

В фотосфере постоянно возникают области пониженной (до 3700 К) температуры, которые светятся слабее и обнаруживаются в виде темных пятен. Количество солнечных пятен изменяется с периодом в 11 лет, но они никогда не покрывают больше 0,5% площади солнечного диска.

Над фотосферой расположен хромосферный слой, а еще выше — солнечная корона. О существовании короны известно с незапамятных времен, поскольку она превосходно видна во время полных солнечных затмений. Хромосферу же открыли сравнительно недавно, лишь в середине XIX века. 18 июля 1851 года сотни астрономов, собравшихся в Скандинавии и окрестных странах, наблюдали, как Луна закрывает солнечный диск. За несколько секунд до появления короны и перед самым концом полной фазы затмения ученые заметили у края диска светящийся красный полумесяц. Во время затмения 1860 года удалось не только лучше рассмотреть такие вспышки, но и получить их спектрограммы. Спустя девять лет английский астроном Норман Локьер назвал эту зону хромосферой.

Плотность хромосферы крайне мала даже по сравнению с фотосферой, всего 10−100 млрд частиц на 1 см³. Зато нагрета она сильнее — до 20 000˚С. В хромосфере постоянно наблюдаются темные вытянутые структуры — хромосферные волокна (их разновидность — всем известные протуберанцы). Они представляют собой сгустки более плотной и холодной плазмы, поднятой из фотосферы петлями магнитного поля. Видны и участки повышенной яркости — флоккулы. И наконец, в хромосфере постоянно появляются и через несколько минут исчезают продолговатые плазменные структуры — спикулы. Это своего рода путепроводы, по которым материя перетекает из фотосферы в корону.

День грядущий

От процессов в солнечных недрах непосредственно зависит грядущая судьба нашего светила. По мере уменьшения запасов водорода ядро постепенно сжимается и разогревается, что увеличивает светимость Солнца. С момента превращения в звезду главной последовательности она уже выросла на 25−30% — и этот процесс будет продолжаться. Примерно через 5 млрд лет температура ядра достигнет сотни миллионов градусов, и тогда в его центре загорится гелий (с образованием углерода и кислорода). На периферии в это время будет дожигаться водород, причем зона его сгорания несколько сдвинется по направлению к поверхности. Солнце потеряет гидростатическую устойчивость, его внешние слои сильно раздуются, и оно превратится в исполинское, но не особенно яркое светило — красный гигант. Светимость этого исполина на два порядка превысит нынешнюю светимость Солнца, но его жизненный срок будет много короче. В центре его ядра быстро накопится большое количество углерода и кислорода, которые вспыхнуть уже не смогут — не хватит температуры. Внешний гелиевый слой будет продолжать гореть, постепенно расширяясь и в силу этого охлаждаясь. Скорость термоядерного сгорания гелия чрезвычайно быстро растет с повышением температуры и падает с ее снижением. Поэтому внутренности красного гиганта начнут сильно пульсировать, и в конце концов дело может дойти до того, что его атмосфера окажется выброшенной в окружающий космос со скоростью в десятки километров в секунду. Сначала разлетающаяся звездная оболочка под действием ионизирующего ультрафиолетового излучения нижележащих звездных слоев ярко засияет голубым и зеленым светом — на этой стадии она называется планетарной туманностью. Но уже через тысячи или, в максимуме, десятки тысяч лет туманность остынет, потемнеет и рассеется в пространстве. Что касается ядра, то там превращение элементов прекратится вовсе, и оно будет светить лишь за счет накопленной тепловой энергии, все больше и больше остывая и угасая. Сжаться в нейтронную звезду или черную дыру оно не сможет, не хватит массы. Такие холодеющие остатки почивших в бозе звезд солнечного типа называют белыми карликами.

Корона — самая горячая часть атмосферы, ее температура достигает нескольких миллионов градусов. Этот нагрев можно объяснить с помощью нескольких моделей, базирующихся на принципах магнитной гидродинамики. К сожалению, все эти процессы очень сложны и изучены весьма слабо. Корона также насыщена разнообразными структурами — дырами, петлями, стримерами.

Политические события в Москве, приведшие к военным действиям

Не идут на контакт

Ни одна из воюющих сторон пока не выступила с предложением возобновить мирный диалог. Более того, президент Азербайджана Ильхам Алиев 29 сентября в эфире программы «60 минут» заявил: «переговоров с Ереваном с учетом нынешней позиции руководства Армении быть не может».

Он также опроверг заявления армянских властей об участии турецких и/или сирийских наемников в операции в НКР. «Турция поддерживает нас только морально», — подчеркнул Алиев.

Выступивший вслед за ним премьер-министр Армении Никол Пашинян был еще более категоричен и заявил, что «есть угроза существованию армянского народа». Политик также подчеркнул, что сбитый Су-25 армянских ВВС — свершившийся факт.

Накрыло войной: что и кто обостряет конфликт в Нагорном Карабахе_7

Горящий танк ВС Азербайджана

Фото: REUTERS

Сразу после выступления Пашиняна стало известно, что 29 сентября по инициативе армянской стороны прошли очередные, уже вторые за три дня переговоры с президентом России Владимиром Путиным. В ходе разговора была «акцентирована настоятельная необходимость прекращения противоборствующими сторонами огня в Карабахе». Российский лидер выразил «серьезную озабоченность» в связи с боевыми действиями в регионе, сообщается на сайте Кремля.

29 сентября в МИД РФ для обсуждения ситуации в Нагорном Карабахе были приглашены послы Армении и Азербайджана. Армянский диппредставитель Вардан Тогонян заявил, что «Ереван пока не обращался в ОДКБ, но тема обсуждается на фоне сообщений о том, что турецкий F-16 сбил армянский Cу-25».

Без внешнего давления со стороны третьих стран, в основном, России и других сопредседателей Минской группы ОБСЕ — Франции и США, конфликт может затянуться на долгое время, отметил в беседе с «Известиями» политолог, эксперт Валдайского клуба Фархад Мамедов.

— На длительность конфликта будет влиять международное внимание, сейчас оно повышенное, возможно будет оказано давление на стороны конфликта с тем, чтобы его прекратить. Но в обеих странах наблюдается общественный запрос на решение этого конфликта именно военным путем

Потому ждать скорых решений от политического руководства не стоит, — считает эксперт.

Накрыло войной: что и кто обостряет конфликт в Нагорном Карабахе_6

Момент уничтожения армянской бронетехники с азербайджанского БПЛА

Фото: Defence Ministry of Azerbaijan/Handout via REUTERS

Он признал: предпосылкой для мира может стать аннулирование Бишкекских договоренностей 1994 года и заключение нового перемирия. В 2016 году это сделать не удалось. Но в этот раз, считает политолог, уже изменена линия фронта, пройдены все красные черты, так что возможно подписание нового перемирия, но с точным графиком реализации мер.

По словам турецкого политолога Керима Хаса, за минувший год не было практически ни месяца, когда бы Анкара не участвовала в каком-либо конфликте: в октябре 2019 года началась кампания «Источник мира» на севере Сирии, в ноябре — противостояние с Грецией по поводу Кипра, в декабре — ливийский фронт, в январе и феврале — противостояние с Россией и Дамаском в Идлибе, затем столкновения с Египтом в Ливии, следом операция в Ираке.

— Текущий конфликт в Нагорном Карабахе — продолжение политики Эрдогана, когда внешнее обострение используется для консолидации общества. Неделю назад прошли громкие аресты 82 прокурдских активистов, в том числе депутатов из Народной демократической партии (НДР). Это резонансное событие, однако обострение в Карабахе его затмило: все четыре ведущие партии парламента, включая правящую «Партию справедливости и развития», выпустили общее заявление, осуждающее действия Армении. Панисламская риторика Эрдогана работает: большая часть населения решительно настроена поддержать Баку, — пояснил «Известиям» эксперт.

Накрыло войной: что и кто обостряет конфликт в Нагорном Карабахе_8

Сбитый вертолет Ми-24 ВВС Азербайджана

Фото: REUTERS

Между тем в Турции уже вторую неделю продолжается падение национальной валюты, 29 сентября лира достигла исторического минимума, снизившись до 7,85 по отношению к доллару. Центральный Банк страны впервые с 2018 года поднял ключевую ставку сразу на 200 базисных пунктов до 10,25% годовых.

Планеты — гиганты

Существуют четыре газовых гиганта, располагающихся за орбитой Марса: Юпитер, Сатурн, Уран, Нептун. Они находятся во внешней Солнечной системе. Отличаются своей массивностью и газовым составом.

Планеты солнечной системы, масштаб не соблюден

Юпитер

Пятая по счёту от Солнца и крупнейшая планета нашей системы. Радиус её – 69912 км, она в 19 раз больше Земли и всего в 10 раз меньше Солнца. Год на Юпитере не самый долгий в солнечной системе, длится 4333 земных суток (неполных 12 лет). Его же собственные сутки имеют продолжительность около 10 земных часов. Точный состав поверхности планеты пока определить не удалось, однако известно, что криптон, аргон и ксенон имеются на Юпитере в гораздо больших количествах, чем на Солнце.

Юпитер, снимок зонда Вояджер-1

Существует мнение, что один из четырёх газовых гигантов на самом деле – несостоявшаяся звезда. В пользу этой теории говорит и самое большое количество спутников, которых у Юпитера много – целых 67. Чтобы представить себе их поведение на орбите планеты, нужна достаточно точная и чёткая модель солнечной системы. Самые крупные из них – Каллисто, Ганимед, Ио и Европа. При этом Ганимед является крупнейшим спутником планет во всей солнечной системе, радиус его составляет 2634 км, что на 8% превышает размер Меркурия, самой маленькой планеты нашей системы. Ио отличается тем, что является одним из трёх имеющих атмосферу спутников.

Сатурн

Вторая по размерам планета и шестая по счёту в Солнечной системе. В сравнении с остальными планетами, наиболее схожа с Солнцем составом химических элементов. Радиус поверхности равен 57350 км, год составляет 10 759 суток (почти 30 земных лет). Сутки здесь длятся немногим дольше, чем на Юпитере – 10,5 земных часов. Количеством спутников он ненамного отстал от своего соседа – 62 против 67. Самым крупным спутником Сатурна является Титан, так же, как и Ио, отличающийся наличием атмосферы. Немного меньше него по размеру, но от этого не менее известные – Энцелад, Рея, Диона, Тефия, Япет и Мимас. Именно эти спутники являются объектами для наиболее частого наблюдения, и потому можно сказать, что они наиболее изучены в сравнении с остальными.

Сатурн, снимок космического аппарата Кассини в 2007 году

Долгое время кольца на Сатурне считались уникальным явлением, присущим только ему. Лишь недавно было установлено, что кольца имеются у всех газовых гигантов, но у остальных они не настолько явно видны. Их происхождение до сих пор не установлено, хотя существует несколько гипотез о том, как они появились. Кроме того, совсем недавно было обнаружено, что неким подобием колец обладает и Рея, один из спутников шестой планеты.

Уран

Седьмая по счету и третья по размеру планета, радиус которой составляет 25267 км. Справедливо считается самой холодной планетой среди остальных, температура достигает -224 градусов по Цельсию. Продолжительность года — 30 685 суток в земном исчислении (почти 84 года), сутки же ненамного меньше земных – 17 с небольшим часов. Из-за сильной наклонности оси планеты, иногда создается впечатление, будто она не вращается, как остальные небесные тела нашей системы, а катится, подобно шару. Это может наблюдать любой, кого интересует астрономия, геометрическая модель солнечной системы наглядно продемонстрирует этот эффект.

Уран — снимок Вояджера-2 в 1986 году

Спутников у него гораздо меньше, чем у соседнего Сатурна, всего 27. Наиболее известны Титания, Ариэль, Оберон, Умбриэль и Миранда. Они не настолько крупны, как спутники.

Примечательно, что ведя наблюдения за Ураном в свой телескоп, астроном Уильям Гершель сначала не понял, что он наблюдает за планетой, будучи уверен, что он видит комету.

Нептун

Размером восьмая планета солнечной системы очень близка к своему ближайшему соседу, Урану. Радиус Нептуна равняется 24547 км. Год на планете равняется 60 190 суток (приблизительно 164 земных года). В атмосфере зафиксированы самые сильные ветра в нашей системе, скорость которых достигает 260 м/с.

Нептун, вид с Вояджера-2

По сравнению с остальными планетами-гигантами спутников у него совсем мало – всего 14. Самые известные из них – Тритон, третий в солнечной системе спутник, имеющий атмосферу, Протей и Нереида.

Примечательно, что это – единственная из планет, которая была открыта не благодаря наблюдениям, а с помощью математических расчётов.

Солнце – это планета или звезда?

Солнце – это звезда. Есть ряд критериев, согласно которым небесное тело может быть отнесено к разряду звезд или планет. Солнце соответствует именно тем характеристикам, которые присущи звездам.

Во все времена значение Солнца было очень велико, а его изучение и исследование всегда были главными направлениями в астрономии. Солнце – это самый большой объект Солнечной системы. К тому же Солнце занимает 99, 8% всей массы системы.

Абсолютно все космические тела Солнечной системы вращаются именно вокруг Солнца. Солнце намного больше Земли. Это относится и к его массе, и к его размерам. Диаметр Солнца составляет 1,3 миллиона километров, его вес – 1.989*10^30 килограммов, температура на его поверхности составляет 5800К, а период оборачивания Солнца вокруг своей оси составляет 25,4 дней.

На Солнце можно наблюдать протекание очень сложных процессов. К примеру, ученый Галилей еще в далеком 1610 году, наблюдая за Солнцем в телескоп, увидел на его поверхности темные пятна. С их помощью он сумел определить время и период оборачивания Солнца. Поверхность Солнца нельзя назвать спокойной, так как она постоянно бурлит, и при этом все вещества, из которых состоит Солнце, то опускаются, то поднимаются. Поэтому вся солнечная поверхность как будто покрыта зернами и гранулами.

Следует отметить, что размер этих зерен и гранул колеблется от 1 до 2 тысяч километров, а период их существования составляет всего лишь несколько минут. Солнечные пятна, открыты Галилеем, намного больше гранул – несколько сотен тысяч километров. К тому же они более устойчивые, чем гранулы, и могут просуществовать приблизительно месяц. Для Солнечных пятен характерен темный оттенок, а их температура составляет 3500К. Количество солнечных пятен возрастает в период солнечной активности, когда можно понаблюдать и за солнечными вспышками.

Солнечные вспышки – это очень сильные выбросы солнечной энергии с его поверхности. Они сопровождаются не только усиленным излучением некоторых участков Солнца, но и активными выбросами частиц, которые могут долетать до магнитного поля Земли, вызывая своим прилетом так званое возмущение, которое плохо сказывается на здоровье многих людей и работе приборов.

Солнце – планета гигант – состоит из внешнего светящегося слоя фотосферы, разреженного горячего газового слоя хромосферы и разреженной горячей короны. Температура в хромосфере достигает десятки тысяч градусов. Корону Солнца увидеть можно только при полном солнечном затмении.

Существует также такое понятие, как солнечный ветер. Это частицы, которые покидают Солнце и устремляются в пространство космоса. Солнечный ветер присущий Солнцу даже при великой солнечной силе гравитации. О существовании солнечного ветра многие ученые долго сомневались. Однако в 1959 году солнечный ветер был зафиксирован космическими аппаратами. До верхних слоев Земли достигают лишь отдельные частицы Солнечного ветра, так как основной поток частиц останавливается благодаря земельному магнитному полю. Частицы солнечного ветра, попадая в верхние слоя Земли, вызывают северное сияние.

Как установили многие современные ученые, источником солнечной энергии есть термоядерные реакции, в процессе которых легкие химические элементы превращаются в тяжелые элементы. Сегодня это превращение водорода в гелий. Водород составляет на сегодняшний день 70% всей массы Солнца, а гелий – лишь 28%. Эти термоядерные реакции могут протекать лишь при высокой температуре, которая находится в центре самого Солнца.

По мнению ученых, Солнце – это звезда, которая отличается от остальных звезд тем, что звезды находятся на большем расстоянии от Земли, чем само Солнце. Это было доказано с помощью спектрального анализа солнечного излучения и изучения его состава.

Видео: как устроено Солнце

См. также

Магнитные поля Солнца

Происхождение и виды солнечных магнитных полей

Корональные выбросы массы на Солнце. Струи плазмы вытянуты вдоль арок магнитного поля

Крупномасштабное (общее или глобальное) магнитное поле с характерными размерами, сравнимыми с размерами Солнца, имеет среднюю напряжённость на уровне фотосферы порядка нескольких гаусс. В минимуме цикла солнечной активности оно имеет приблизительно дипольную структуру, при этом напряжённость поля на полюсах Солнца максимальна. Затем, по мере приближения к максимуму цикла солнечной активности, напряжённости поля на полюсах постепенно уменьшаются и через один-два года после максимума цикла становятся равными нулю (так называемая «переполюсовка солнечного магнитного поля»). На этой фазе общее магнитное поле Солнца не исчезает полностью, но его структура носит не дипольный, а квадрупольный характер. После этого напряжённость солнечного диполя снова возрастает, но при этом он имеет уже другую полярность. Таким образом, полный цикл изменения общего магнитного поля Солнца, с учётом перемены знака, равен удвоенной продолжительности 11-летнего цикла солнечной активности — примерно 22 года («закон Хейла»).

Средне- и мелкомасштабные (локальные) поля Солнца отличаются значительно бо́льшими напряжённостями полей и меньшей регулярностью. Самые мощные магнитные поля (до нескольких тысяч гаусс) наблюдаются в группах солнечных пятен в максимуме солнечного цикла. При этом типична ситуация, когда магнитное поле пятен в западной («головной») части данной группы, в том числе самого крупного пятна (т. н. «лидера группы») совпадает с полярностью общего магнитного поля на соответствующем полюсе Солнца («p-полярностью»), а в восточной («хвостовой») части — противоположна ему («f-полярность»). Таким образом, магнитные поля пятен имеют, как правило, биполярную или мультиполярную структуру. В фотосфере также наблюдаются униполярные области магнитного поля, которые, в отличие от групп солнечных пятен, располагаются ближе к полюсам и имеют значительно меньшую напряжённость магнитного поля (несколько гаусс), но большую площадь и продолжительность жизни (до нескольких оборотов Солнца).

Согласно современным представлениям, разделяемым большей частью исследователей, магнитное поле Солнца генерируется в нижней части конвективной зоны с помощью механизма гидромагнитного конвективного динамо, а затем всплывает в фотосферу под воздействием магнитной плавучести. Этим же механизмом объясняется 22-летняя цикличность солнечного магнитного поля.

Существуют также некоторые указания на наличие первичного (то есть возникшего вместе с Солнцем) или, по крайней мере, очень долгоживущего магнитного поля ниже дна конвективной зоны — в лучистой зоне и ядре Солнца.

Солнечная активность и солнечный цикл

Комплекс явлений, вызванных генерацией сильных магнитных полей на Солнце, называют солнечной активностью. Эти поля проявляются в фотосфере как солнечные пятна и вызывают такие явления, как солнечные вспышки, генерацию потоков ускоренных частиц, изменения в уровнях электромагнитного излучения Солнца в различных диапазонах, корональные выбросы массы, возмущения солнечного ветра, вариации потоков галактических космических лучей (Форбуш-эффект) и т. д.

С солнечной активностью связаны также вариации геомагнитной активности (в том числе и магнитные бури), которые являются следствием достигающих Земли возмущений межпланетной среды, вызванных, в свою очередь, активными явлениями на Солнце.

Одним из наиболее распространённых показателей уровня солнечной активности является число Вольфа, связанное с количеством солнечных пятен на видимой полусфере Солнца. Общий уровень солнечной активности меняется с характерным периодом, примерно равным 11 годам (так называемый «цикл солнечной активности» или «одиннадцатилетний цикл»). Этот период выдерживается неточно и в XX веке был ближе к 10 годам, а за последние 300 лет варьировался примерно от 7 до 17 лет. Циклам солнечной активности принято приписывать последовательные номера, начиная от условно выбранного первого цикла, максимум которого был в 1761 году. В 2000 году наблюдался максимум 23-го цикла солнечной активности.

Существуют также вариации солнечной активности большей длительности. Так, во второй половине XVII века солнечная активность и, в частности, её одиннадцатилетний цикл были сильно ослаблены (минимум Маундера). В эту же эпоху в Европе отмечалось снижение среднегодовых температур (т. н. Малый ледниковый период), что, возможно, вызвано воздействием солнечной активности на климат Земли. Существует также точка зрения, что глобальное потепление до некоторой степени вызвано повышением глобального уровня солнечной активности во второй половине XX века. Тем не менее, механизмы такого воздействия пока ещё недостаточно ясны.

Самая большая группа солнечных пятен за всю историю наблюдений возникла в апреле 1947 года в южном полушарии Солнца. Её максимальная длина составляла 300 000 км, максимальная ширина — 145 000 км, а максимальная площадь превышала 6000 миллионных долей площади полусферы (мдп) Солнца, что примерно в 36 раз больше площади поверхности Земли. Группа была легко видна невооружённым глазом в предзакатные часы. Согласно каталогу Пулковской обсерватории, эта группа (№ 87 за 1947 год) проходила по видимой с Земли полусфере Солнца с 31 марта по 14 апреля 1947 года, максимальная её площадь составила 6761 мдп, а максимальная площадь наибольшего пятна в группе — 5055 мдп; количество пятен в группе достигало 172.

Солнце как переменная звезда

Так как магнитная активность Солнца подвержена периодическим изменениям, а вместе с этим изменяется и его светимость, его можно рассматривать как переменную звезду. В годы максимума активности Солнце ярче, чем в годы минимума. Амплитуда изменений солнечной постоянной достигает 0,1 % (в абсолютных значениях это 1 Вт/м², тогда как среднее значение солнечной постоянной — 1361,5 Вт/м²).

Также некоторые исследователи относят Солнце к классу низкоактивных переменных звёзд типа BY Дракона. Поверхность таких звёзд покрыта пятнами (до 30 % от общей площади), и за счёт вращения звёзд наблюдаются изменения их блеска. У Солнца такая переменность очень слабая.

НАТО и США начали выводить войска из Афганистана. Не приведет ли это в возвращению к власти талибов?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector