Промышленные вв (2)

Физическая природа взрывного превращения

Взрывное превращение, как правило, носит кратковременный характер, протекает при температурах от 2500 до 4500 K и сопровождается выделением огромного количества высокотемпературных газов и тепла. Взрывная реакция не требует наличия в окружающем воздухе окислителя (в качестве которого обычно выступает кислород), поскольку он содержится в химически связанном виде в ингредиентах взрывчатки.

Стоит отметить, что суммарное количество энергии, которая высвобождается при взрыве, относительно невелико и обычно в пять или шесть раз меньше теплотворной способности нефтепродуктов аналогичной массы. Тем не менее, несмотря на скромную энергетическую отдачу, огромная скорость реакции, которая по закону Аррениуса является следствием большой температуры, обеспечивает достижение высоких значений мощности.

Высвобождение большого количества газообразных продуктов сгорания считается другим признаком химической реакции в виде взрыва. При этом, стремительная трансформация взрывчатого вещества в высокотемпературные газы сопровождается скачкообразным изменением давления (до 10—30 ГПа), которое носит название ударной волны. Распространение этой волны способствует передаче энергии от одного слоя взрывчатки к другому и сопровождается возбуждением в новых слоях аналогичной химической реакции. Этот процесс получил название детонации, а инициирующая его ударная волна стала называться детонационной волной.

Существует ряд веществ, способных к нехимическому взрыву (например, ядерные и термоядерные материалы, антивещество). Также существуют методы воздействия на различные вещества, приводящие к взрыву (например, лазером или электрической дугой). Обычно такие вещества не называют «взрывчатыми».

Что со всем этим делать

Никто пока точно не знает, как утилизировать космический мусор. Но с 1993 года, когда проблему впервые подняли на международный уровень — генсек ООН заявил, что не бывает засорения национального околоземного пространства, только общего,  — появилось несколько теорий.

Ученые из разных стран предлагали:

  1. Собирать обломки гигантскими металлическими сетями;.
  2. Буксировать их дальше от Земли или менять их орбиты с помощью ионных пучков, наземных лазеров;.
  3. Испарять мусор лазерами, установленными на спутниках;.
  4. Отбрасывать их огромными электромагнитами в земную атмосферу, чтобы они в ней сгорали;.
  5. Просто собирать его для дальнейшей переработки;.
  6. Рассеять вокруг Земли облако вольфрамовой пыли толщиной 30 км, которое будет захватывать мелкий мусор.

Экономически рентабельного и работающего метода по уничтожению космического мусора на орбитах более 600 км (там не сказывается очищающий эффект от торможения об атмосферу) пока нет. Хоть какие-то очертания есть у двух идей.

Во-первых, есть швейцарский стартап CleanSpace.  Уже несколько лет он работает над аппаратом, который будет уводить с орбиты отработавшие свое спутники. На сайте компании долгое время было написано, что уборщик будет запущен в 2018 году. Месяц назад стало известно, что запуск отложен до 2024 года.

В Федеральной политехнической школе Лозанны, где базируется стартап, отметили, что главная сложность — научить аппарат распознавать разные виды объектов. Для начала — студенческий наноспутник (10×10 см) SwissCube, который крутится вокруг Земли с 2009 года. Он станет первой жертвой CleanSpace One. С помощью сети аппарат должен захватывать спутник в ловушку.

Глава проекта Люк Пиге (Luc Piguet) говорил, что, для того чтобы находить спутники, CleanSpace One будет ориентироваться на мерцание света, отражающегося от спутника при вращении.

Размеры CleanSpace One, судя по визуализации, будет несильно больше, чем у наноспутника, который станет его целью. В планах у компании — создать платформу, к которой будет крепиться несколько таких чистильщиков. Они должны будут убрать больше 3 тыс. частиц мусора с орбиты.

Во-вторых, на 2023 год запланирован запуск аппарата e.Deorbit, который создается Европейским космическим агентством. И он будет значительно крупнее, чем CleanSpace One. Заявленный вес — 1,6 тыс. кг.

Первой целью e.Deorbit станет самый большой спутник в истории, 26-метровый восьмитонный Envisat. Он был запущен для исследования Земли из космоса в 2002 году. Последний раз выходил на связь в 2012-м. Аппарат захватит Envisat с помощью щупалец или сети (авторы пока не решили). И вместе с ним сойдет с орбиты Земли, вероятно, сбросив в какой-то момент спутник, чтобы тот сгорел в атмосфере.

Похожий аппарат из Великобритании, только с гарпуном вместо сети или щупалец, должен был быть запущен в апреле 2018 года. Однако информация на сайте проекта RemoveDEBRIS не обновлялась и судьба его неизвестна.

Своей проект есть и у России. По крайней мере он упоминается в Федеральной космической программе на 2016−2025 годы. К 2025 году должен быть создан уборщик мусора с геостационарных орбит. Планируется, что в течение полугода каждый аппарат будет переводить на орбиту захоронения до 10 объектов.

Но все эти проекты будут реализованы не скоро, а судя по истории с CleanSpace One — даже очень не скоро. Так что пока за мусором наблюдают, его считают и надеются, что убирать его начнут до того, как Землю накроет мусорный купол, который лишит нас интернета.

Методы удаления мусора

Сегодня о том, что избавляться от накопившегося мусора на орбите нужно, не остается ни у кого сомнений. Иначе отходы будут попросту увеличиваться ежегодно, даже если люди прекратят запускать космические аппараты на орбиту. Но, к сожалению, эффективные методы удаления мусора пока остаются на бумаге.

Проблемой космического мусора занялись ученые еще в эпоху СССР, когда стали создаваться разные организации по борьбе с космическим мусором.

Сегодня действует координационный комитет “Триолан”, основанный национальными космическими объектами.

Предлагаются разные методы борьбы с загрязнением орбиты:

  • Строительство грандиозного космического лифта или электродинамической станции отслеживания космического мусора, позволяющих замедлить скорость летящих кусков с последующим сгоранием в атмосфере.
  • Тщательный контроль за запусками ракет.
  • Усиление защиты космического оборудования от попадания мелких частиц
  • Дополнительная закладка топлива на спутнике с целью выведения мусора из орбит.

Широко обсуждается идея использования наземного лазера, способного заставлять космические объекты и спутники падать в нужном направлении на землю или сгорать полностью в атмосфере.

Также ведутся споры о создании гигантского блока из аэрогеля (легкий пористый материал) для приёма на себя ударов частиц мусора. Однако данные методы пока работают плохо, и космос ежегодно загрязняется обломками с орбиты.

Другие альтернативные идеи для борьбы с космическим мусором, предлагаемые европейским космическим агентством:

Применение реактивной струи с установкой на мощных космических аппаратов.

  1. Установка сети (длиной 700м) для захвата хлама с последующей перевозкой, захоронением выше 240 км от Земли.
  2. Использование солнечного паруса (двигателя, использующего космический мусор) — источника энергии движения с космическими агрегатами для транспортировки мусора.
  3. Подключение роботов (средств обнаружения) с целью транспортировки мусора вокруг земли·        использование облаков вольфрамовой пыли для воздействия на хлам и изгнания его с орбиты.

Пока все технологии сжигания мусора в атмосфере остаются на бумаге. Самая рациональная идея — установка мощного лазера с непрерывным действием, позволяющего корректировать скорость движения обломков и даже изменить их траекторию.

Но 1 лазерная установка с соответствующей инфраструктурой обойдется в 10 млн.$, да и многие страны запрещают ввоз оружия на орбиту. Для решения вопросов необходимо заключать международные соглашения.

Стоит знать! Ученые ищут оптимальные способы для отслеживания обломков и метеоритного дождя, ведь скорость движения в космосе до 10 км в секунду, что представляет особые трудности.

Предполагается использовать мощные спутники, способные охватывать обломки, направляя в сторону планеты.

Основные помощники – лазеры, дающие возможность чистить орбиты, находить остатки отработанных космических кораблей, проводить археологические раскопки. Однако многие идеи остаются нереальными или дорогостоящими.

Общая характеристика

Вскрытие входной двери с помощью компактного подрывного заряда (2008 год)

Любое взрывчатое вещество обладает следующими характеристиками:

  • способность к экзотермическим химическим превращениям
  • способность к самораспространяющемуся химическому превращению

Важнейшими характеристиками взрывчатых веществ являются:

  • скорость взрывчатого превращения (скорость детонации или скорость горения),
  • давление детонации,
  • теплота (удельная теплота) взрыва,
  • состав и объём газовых продуктов взрывчатого превращения,
  • максимальная температура продуктов взрыва (температура взрыва),
  • чувствительность к внешним воздействиям,
  • критический диаметр детонации,
  • критическая плотность детонации.

При детонации разложение взрывчатых веществ происходит настолько быстро (за время от 10−6 до 10−2сек), что газообразные продукты разложения с температурой в несколько тысяч градусов оказываются сжатыми в объёме, близком к начальному объёму заряда. Резко расширяясь, они являются основным первичным фактором разрушительного действия взрыва.

Различают два основных вида действия взрывчатых веществ: бризантное (местного действия) и фугасное (общего действия).

Существенное значение при хранении взрывчатых веществ и обращении с ними имеет их стабильность.

В прикладных сферах широко используется не более двух-трёх десятков взрывчатых веществ и их смесей. Основные характеристики наиболее распространённых из них сведены в следующую таблицу (данные приведены при плотности заряда 1600 кг/м3):

Взрывчатое вещество Кислородный баланс,% Теплота взрыва, МДж/кг Объём продуктов взрыва, м3/кг Скорость детонации, км/с
Тротил -74,0 4,2 0,75 7,0
Тетрил -47,4 4,6 0,74 7,6
Гексоген -21,6 5,4 0,89 8,1
Тэн -10,1 5,9 0,79 7,8
Нитроглицерин +3,5 6,3 0,69 7,7
Аммонит № 6 4,2 0,89 5,0
Нитрат аммония +20,0 1,6 0,98 ≈1,5
Азид свинца неприменимо 1,7 0,23 5,3
Баллиститный порох -45 3,56 0,97 7,0

Космический мусор: откуда берется и почему никуда не улетает

3. ПРАВИЛА ПРИЕМКИ

3.1. Приемку предохранительных аммонитов производят по ГОСТ 14839.0-91* со следующими дополнениями:

потребитель производит проверку аммонитов по следующим показателям:

внешний вид упаковки и состояние маркировки тары;

внешний вид и маркировка пачек и патронов;

массовая доля влаги;

рассыпчатость;

передача детонации между патронами (сухими и после выдержки в воде).

Периодические испытания проводят специализированные организации — эксперты по безопасности работ.

(Измененная редакция, Изм. № 1, 7).

________

* На территории Российской Федерации действует ГОСТ Р 50843-95.

3.2, 3.3. (Исключены, Изм. № 2).

3.4. При проведении обязательной сертификации аммонитов контролю подлежат все показатели, предусмотренные пп. , и .

(Введен дополнительно, Изм. № 7).

Степень опасности

Также в качестве примера можно рассмотреть взрывоопасные вещества по степени их опасности. На первом месте находятся газы на основе углеводорода. Данные вещества склонны к произвольной детонации. К ним относятся хлор, аммиак, фреоны и так далее. Согласно статистике, почти треть происшествий, в которых основными действующими лицами выступают взрывоопасные вещества, связаны с газами на основе углеводорода.

Дальше следует водород, который в определенных условиях (например, соединение с воздухом в соотношении 2:5) приобретает наибольшую взрывоопасность. Ну и замыкают эту тройку лидеров по степени опасности пары жидкостей, которые склонны к воспламенению. Прежде всего, это пары мазута, дизельного топлива и бензина.

Катер РЅР° воздушной подушке «РЎРµРІРµСЂ-2»

В компьютерных играх

Трициклическая мочевина

В словаре Словарь иностранных слов

C-4 в массовой культуре

  • Наглядное применение и действие С-4 можно увидеть почти в любой из серий сериала «Звёздные врата » (где один из персонажей даже назвал резервный «План В» отряда «планом Си»), впрочем, как и во многих других голливудских боевиках
  • В играх на военную и околовоенную тематики: Point Blank , CrossFire , Fallout , Jungle Strike , Warfare , сериях Battlefield , Call of Duty , Counter-Strike , Grand Theft Auto , Critical-Ops, Metal Gear , XCOM 2 и пр., часто в виде брусков или пакетов с дистанционными детонаторами
  • В игре World of Warcraft существует взрывчатое вещество сефорий (seaforium) которое является явной отсылкой к C-4 (си-фор)
  • С-4 часто применяется в сериале «Остаться в живых »
  • В книге «Академия вампиров. Последняя жертва » использовали для подрыва половины королевского двора
  • С-4 встречается в сериале

Инициирующие взрывчатые вещества

Обладают высокой чувствительностью к внешним воздействиям, их взрыв (детонация) оказывает детонационное воздействие на бризантные и метательные ВВ, которые обычно к остальным типам внешнего воздействия не чувствительны вовсе или же обладают неудовлетворительной чувствительностью.

Поэтому, инициирующие вещества и применяют только для возбуждения взрыва бризантных или метательных ВВ. Для обеспечения безопасности применения инициирующих ВВ, их упаковывают в защитные приспособления (капсюль, капсюльная втулка, капсюль – детонатор, электродетонатор, взрыватель). Типичные представители инициирующих ВВ: гремучая ртуть, азид свинца, тенерес (ТНРС).

Гремучая ртуть (фульминат ртути). Это вещество представляет собой мелкокристаллическое сыпучее вещество белого или серого цвета. Ядовита, плохо растворяется в холодной и горячей воде. Получают его из металлической ртути путем обработки ее азотной кислотой и этиловым спиртом в присутствии некоторых добавок: медных опилок и соляной кислоты.

Гремучая ртуть (фульминат ртути) под стеклом.

К удару, трению и тепловому воздействию гремучая ртуть наиболее чувствительна по сравнению с другими инициирующими ВВ, применяемыми на практике. При увлажнении гремучей ртути ее взрывчатые свойства и восприимчивость к начальному импульсу понижаются (например, при 10 % влажности гремучая ртуть только горит, не детонируя, а при 30 % влажности не горит и не детонирует).

При отсутствии влаги, гремучая ртуть не взаимодействует химически с медью и ее сплавами. С алюминием же она взаимодействует энергично с выделением тепла и образованием невзрывчатых соединений (происходит разъединение алюминия). Поэтому гильзы гремучертутных капсюлей изготовлены из меди или мельхиора, а не из алюминия.

Гремучая ртуть разлагается в кислотах и щелочах, а также при нагревании до температуры +50°С и более, а концентрированная серная кислота вызывает ее взрыв. Применяется для снаряжения капсюлей-воспламенителей запалов.

Азид свинца (азотистоводородный свинец) представляет собой белый негигроскопичный мелкокристаллический порошок. При воздействии на него влаги и низких температур не снижает своей чувствительности и способности детонировать. Получают его из металлического натрия и свинца в результате взаимодействия их с аммиаком и азотной кислотой. Интересно то, что азид свинца является единственным из применяемых ВВ, не содержащим кислород.

Азид свинца (азотистоводородный свинец)

Кислоты, щелочи, углекислый газ (особенно в присутствии влаги) и солнечный свет медленно разлагают азид свинца. Температурные колебания не влияют на его стойкость, но при нагревании до +200°С он начинает разлагаться.

По сравнению с гремучей ртутью, азиц свинца менее чувствителен к искре, лучу пламени и удару: но инициирующая способность азида свинца выше, чем у гремучей ртути. Так, например, для инициирования одного грамма тетрила нужно 0,29 г гремучей ртути и только 0,025 г азида свинца.

Для надежности возбуждения детонации азида свинца от искры и накола его покрывают, соответственно, слоем тенереса или специального накольного состава.

Азид свинца химически не взаимодействует с алюминием, но взаимодействует с медью и ее сплавами, с образованием азида меди, который во много раз чувствительнее азида свинца, поэтому гильзы капсюлей снаряжаемых азидом свинца, изготовляются из алюминия, а не из меди. Применяется для снаряжения капсюлей-детонаторов.

Тенерес или ТНРС (тринитрорезорцинат свинца) – несыпучий мелкокристаллический порошок желтого цвета, малогигроскопичный и не взаимодействующий с металлами, представляет собой свинцовую соль стифниновой кислоты. Не подвержен разложению кислотами. Под действием солнечного света тенерес темнеет и разлагается. Температурные колебания на тенерес действуют так же, как и на азид свинца. Растворимость тенереса в воде незначительна.

Инициирующая способность тоже весьма незначительна (даже 2 грамма тенереса не вызывают детонации тетрила), поэтому тенерес как самостоятельное инициирующее вещество не применяется, а вследствие своей большей чувствительности к искре и лучу пламени по сравнению с азидом свинца идет вместе с ним на снаряжение капсюлей-детонаторов.

Южно-Китайское море

Проснувшись на корабле проходим оп коридорам в поисках Ирландца, в конце концов встретив Пака следуем за ним пока всё же не встретимся с Ирландцем. Далее все вместе идём на встречу с Гаррисоном по дороге увидев горящий авианосец “Титан”. После разговора с капитаном вооружаемся и отправляемся за агентом Ковиком, добравшись до катера встаём за штурвал нажав кнопку Е. Далее плывём к авианосцу, оплываем его вокруг в поисках пробоины через которую можно пробраться внутрь. Обнаружив дыру в борту заезжаем туда на катере после чего движемся по коридорам корабля за бойцами своего отряда в поисках люка G-46. Обнаружив помещение с люком G-46 загляните в коридор напротив, там на ящике можно найти пистолет-пулемёт P90. В итоге открыв люка G-46 прыгаем в воду и плывём по затопленным коридорам в след за Ирландцем, чтобы выбраться из воды нажмите пробел. Далее открыв дверь бежим по коридорам и через машинное отделение доберёмся до выживших, которых придётся бросить. Двигаясь дальше забираем регистратор данных после чего нужно будет выбраться с “Титана” и вернуться на “Валькирию”.

Открыв следующую дверь стреляем по врагам так же не забыв указать цели другим членам отряда, зачистив помещение от врагов открываем следующую дверь попав в коридор с очередными вражескими бойцами. Не успеете толком прицелится как корабль разломится пополам, встав на ноги прыгаем на палубу на которой атакуем очередные силы противника, и в конце концов перебив всех врагов прыгаем с палубы в воду вслед за остальными. Далее захватив китайский катер возвращаемся на “Валькирию” уничтожая по дороге вражеские катера, а так же вертолёт. После уничтожения вертолёта заезжаем внутрь корабля через колодезную палубу, выбравшись из катера сразу вступаем в бой с вражескими бойцами и начинаем прорываться к мостику. Двигаясь вперёд увидим вражеские вертолёты атакующие капитанский мостик, подобрав из ящика с гаджетами стингер сбиваем вертолёты после чего проходим в следующее помещение, где снова вступаем в перестрелку с китайцами.

Уничтожив врагов движемся в мед отсек и пока Пак ломает дверь смотрим как китаянка которую спасали в предыдущей миссий врукопашную дерётся с солдатами врага). Из мед отсека поднимаемся на палубу где снова уничтожаем врагов, после чего помогаем Ковику освободить лестнице нажав Е и лезем по ней на вверх за Ковиком. Упав после взрыва на палубу берём стингер и сбиваем вражеские транспортные вертолёты пока те не высадили бойцов, так же можно давать целеуказание ПВО “Валькирии”. Уничтожив вертушки возвращаемся к раненому Ковику, и получив от него регистратор с данными лезем по лестнице наверх. Добравшись до мостика и уничтожив вражеских солдат освобождаем капитана закончив таким образом прохождение данной главы.

Гексоген

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентировал лекарство гексоген – аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил – 285 кубических сантиметров. Иными словами, гексаген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

Индивидуальные вещества используемые в практике

Устройство кандалов

Из воздуха и воды

Взрывчатые вещества на основе аммиачной селитры были запатентованы в 1867 году, но по причине высокой гигроскопичности долго не применялись. Дело сдвинулось с мертвой точки лишь после развития производства минеральных удобрений, когда были найдены эффективные способы предотвращения слеживаемости селитры.

Большое количество открытых в XIX веке взрывчатых веществ, содержащих азот (мелинит, тротил, нитроманнит, пентрит, гексоген), требовало большого количества азотной кислоты. Это подвигло немецких химиков на разработку технологии связывания атмосферного азота, что, в свою очередь, дало возможность получать взрывчатку без участия минеральных и ископаемых видов сырья.

Снос обветшавшего моста при помощи бризантных зарядов. Такая работа — это искусство предвидения последствий.

Вот так взрываются шесть тонн аммонала.

Аммиачная селитра, служащая основой взрывчатых композитов, в буквальном смысле вырабатывается из воздуха и воды по методу Габера (того самого Фрица Габера, который известен как создатель химического оружия). Взрывчатые вещества на основе аммиачной селитры (аммониты и аммоналы) произвели переворот в промышленном взрывном деле. Они оказались не только очень мощными, но и исключительно дешевыми.

Таким образом, горнодобывающая и строительная промышленность получила дешевую взрывчатку, которая при необходимости может быть с успехом использована и в военном деле.

В середине XX века в США распространились композиты из аммиачной селитры и дизельного топлива, а затем были получены водонаполненные смеси, хорошо подходящие для взрывов в глубоких вертикальных скважинах. В настоящее время список применяемых в мире индивидуальных и композитных взрывчатых веществ насчитывает сотни наименований.

Итак, подведем краткий и, возможно, неутешительный для кого-то итог нашему знакомству с взрывчатыми веществами. Мы с вами познакомились с терминологией взрывного дела, узнали, какие бывают взрывчатки и где они применяются, немного вспомнили историю. Да, мы ничуть не улучшили своего образования в плане создания взрывчатых веществ и взрывных устройств. И это, скажу я вам, к лучшему. Будьте счастливы при малейшей возможности.

Рукой ребенка
Военный инженер Джон Ньютон.

Ярким примером работ, которые были бы невозможными без взрывчатых веществ, можно считать разрушение скалистого рифа Флад Рок в Воротах Ада — узком участке пролива Ист-Ривер около Нью-Йорка.

На производство этого взрыва было употреблено 136 тонн взрывчатки. На площади 38220 квадратных метра было проложено 6,5 километра галерей, в которых разместили 13280 зарядов (в среднем по 11 килограмм взрывчатки на заряд). Работы производились под руководством ветерана гражданской войны Джона Ньютона.

10 октября 1885 года в 11:13 двенадцатилетняя дочь Ньютона подала электрический ток на детонаторы. Вода поднялась кипящей массой на площади 100 тысяч квадратных метров, было отмечено три последовательных подземных толчка в течение 45 секунд. Шум от взрыва продолжался около минуты и был слышен на расстоянии пятнадцати километров. Благодаря этому взрыву путь к Нью-Йорку из Атлантического океана сократился более чем на двенадцать часов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector