Супербомба: история и мифы. 65 лет назад советский союз взорвал свою первую термоядерную бомбу. как устроено это оружие, что оно может и чего не может?

Содержание:

Как устроена атомная бомба?

Ядерный взрыв – это хаотичный процесс освобождения колоссального количества энергии, которая образуется в результате ядерной реакции деления или синтеза. Аналогичные и сопоставимые по мощности процессы происходят в недрах звезд.

Ядро атома любого вещества делится при поглощении нейтронов, но для большинства элементов периодической таблицы для этого необходимо затратить значительную энергию. Однако существуют элементы, способные к подобной реакции под воздействием нейтронов, которые обладают любой – даже минимальной – энергией. Они называются делящимися.

Главной особенностью ядерной реакции является ее цепной, то есть самоподдерживающийся характер. При облучении атома нейтронами он распадается на два осколка с выделением большого количества энергии, а также двух вторичных нейтронов, которые, в свою очередь, способны вызывать деление соседних ядер. Так процесс становится каскадным. В результате цепной ядерной реакции за короткий промежуток времени в очень ограниченном объеме образуется колоссальное количество «осколков» распавшихся ядер и атомов в виде высокотемпературной плазмы: нейтронов, электронов и квантов электромагнитного излучения. Этот сгусток стремительно расширяется, образуя ударную волну огромной разрушительной силы.

Устройство первой советской ядерной бомбы

Подавляющая часть современного ядерного оружия работает не на основе цепной реакции распада, а за счет слияния ядер легких элементов, которые начинаются при высоких температурах и огромном давлении. При этом происходит выделение еще большего количества энергии, чем во время распада ядер типа урана или плутония, но принципиально результат не изменяется – образуется область высокотемпературной плазмы. Подобные превращения носят название реакции термоядерного синтеза, а заряды, в которых они используются, — термоядерные.

Отдельно следует сказать о специальных видах ЯО, у которых большая часть энергии деления (или синтеза) направлена на один из факторов поражения. К ним относятся нейтронные боеприпасы, порождающие поток жесткого излучения, а также так называемая кобальтовая бомба, дающая максимальное радиационное заражение местности.

Боевое применение

БРДМ-2 многие годы использовалась советской армией, эту машину поставляли всем странам-участницам Варшавского договора и активно экспортировали за его пределы. Так что послужной список у БРДМ-2 весьма солидный.

Машина принимала участие во вторжении войск стран ВД в Чехословакию.

БРДМ-2 стала героем одного из крупнейших сражений войны Судного дня. 6 октября 1973 года армия Египта форсировала Суэцкий канал и была встречена израильской бронетанковой дивизией. С помощью ПТРК «Малютка», установленных на БРДМ-2, были уничтожены более 150 танков М48 и М60. Не менее успешно применялись БРДМ-2 с ПТРК против израильских танков и в Сирии.

Применялась БРДМ-2 и в ходе всех иракских конфликтов. Машина активно использовалась советскими войсками в Афганистане и зарекомендовала себя довольно неплохо.

Российские федеральные войска активно использовали БРДМ-2 в ходе первой и второй чеченской кампании. Применялась она и сепаратистами. Машина показала себя плохо приспособленной к боевым действиям в городских условиях. Недостаточным оказались уровень ее защищенности и огневая мощь.

Россия использовала БРДМ-2 во время войны с Грузией в 2008 году. Сейчас машина применяется обеими сторонами конфликта на востоке Украины.

Атомное оружие

АТОМНОЕ ОРУЖИЕ, устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. Эти атомные бомбы состояли из двух стабильных доктритических масс УРАНА и ПЛУТОНИЯ, которые при сильном сталкивании вызвали превышение КРИТИЧЕСКОЙ МАССЫ, тем самым провоцируя бесконтрольную ЦЕПНУЮ РЕАКЦИЮ деления атомных ядер. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола. Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно — в детеррите лития. Взрывная мощность может равняться мощности нескольких миллионов тонн (мегатонн) тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Она вызывает слабый взрыв, который, однако, сопровождается интенсивным выбросом высокоскоростных НЕЙТРОНОВ. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели.

Вначале взрыв атомной бомбы (А) образует огненный шар (1) с температурой и миллионы градусов по Цельсию и испускает радиационное излучение (?) Через несколько минут (В) шар увеличивается в обьеме и создав!ударную волну с высоким давлением (3). Огненный шар поднимается (С), всасывая пыль и обломки, и образует грибовидное облако (D), По мере увеличения в обьеме огненный шар создает мощное конвекционное течение (4), выделяя горячее излучение (5) и образуя облако (6), При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным (7) в радиусе 8 км, серьезными (8) в радиусе 15км и заметными (Я) в радиусе 30 км Даже на расстоянии 20 км (10) взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию.

Сбор информации о ядерной проблеме

Сбором информации касательно ядерной проблемы с 1939 года занимались 1-е Управление НКВД и ГРУ РККА. В 1940 году, в октябре, от Д. Кэрнкросса поступило первое сообщение, в котором говорилось о планах создания атомной бомбы. Данный вопрос был рассмотрен в Британском комитете по науке, в котором работал Кэрнкросс. В 1941 году, летом, был утвержден проект создания бомбы, который назывался «Тьюб эллойз». Англия к началу войны была одним из мировых лидеров в ядерных разработках. Такая ситуация сложилась во многом благодаря помощи немецких ученых, которые бежали в эту страну с приходом Гитлера к власти.

К. Фукс, член КПГ, был одним из них

Он отправился осенью 1941 года в советское посольство, где сообщил о том, что обладает важной информацией о мощном оружии, созданном в Англии. С

Крамер и Р. Кучинская (радистка Соня) были выделены для связи с ним. Первые радиограммы, посланные в Москву, содержали информацию о специальном методе разделения изотопов урана, газодиффузионном, а также о строящимся для данной цели заводе в Уэльсе. После шести передач прервалась связь с Фуксом.

Испытание атомной бомбы в СССР, дата которого сегодня широко известна, подготовили и другие разведчики. Так, советский разведчик в Соединенных Штатах Семенов (Твен) в конце 1943 года сообщил, что Э. Ферми в Чикаго удалось осуществить первую цепную реакцию. Источником данной информации был физик Понтекорво. По линии внешней разведки в это же время поступили из Англии закрытые труды ученых Запада, касающиеся атомной энергии, датированные 1940-1942 годами. Информация, содержащаяся в них, подтверждала, что большой прогресс был достигнут в создании атомной бомбы.

Жена Коненкова (на фото ниже), известного скульптора, работала вместе с другими на разведку. Она сблизилась с Эйнштейном и Оппенгеймером, крупнейшими физиками, и оказывала долгое время влияние на них. Л. Зарубина, другой резидент в США, входила в круг людей Оппенгеймера и Л. Сциларда. С помощью этих женщин СССР удалось внедрить агентов в Лос-Аламос, Ок-Ридж, а также Чикагскую лабораторию — крупнейшие центры ядерных исследований в Америке. Информацию по атомной бомбе в США передавали советской разведке в 1944 году супруги Розенберги, Д. Грингласс, Б. Понтекорво, С. Саке, Т. Холл, К. Фукс.

В 1944 году, в начале февраля, Л. Берия, нарком НКВД, провел заседание руководителей разведки. На нем было принято решение по координации сбора информации, касающейся атомной проблемы, которая поступала по линии ГРУ РККА и НКВД. Для этого был создан отдел «С». В 1945 году, 27 сентября, он был организован. П. Судоплатов, комиссар ГБ, возглавил этот отдел.

Поступавшие по этим каналам сведения ускорили и облегчили задачу, поставленную перед советскими учеными. Специалисты Запада полагали, что в СССР бомба может быть создана лишь в 1954-1955 годах. Однако они ошиблись. Первое испытание атомной бомбы в СССР произошло в 1949 году, в августе.

Об Атомном оружиии

Атомное оружие – самое мощное оружие на сегодняшний день, находящееся на вооружении пяти стран: России, США, Великобритании, Франции и Китая.
Существует также ряд государств, которые ведут более-менее успешные разработки атомного оружия, однако их исследования или не закончены, или
эти страны не обладают необходимыми средствами доставки оружия к цели. Индия, Пакистан, Северная Корея, Ирак, Иран имеют разработки ядерного оружия на разных уровнях, ФРГ, Израиль, ЮАР и Япония теоретически обладают необходимыми мощностями для создания ядерного оружия в сравнительно короткие сроки.

Взрыв в Нагасаки

Трудно переоценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой – самый эффективный инструмент укрепления
мира и предотвращения военного конфликтами между державами, которые обладают этим оружием. С момента первого применения атомной бомбы в Хиросиме прошло 52 года. Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории
международных отношений и в истории человечества.

Способ изготовления сюрикена

Перед тем как сделать сюрикен из металла, нужно смастерить из металлической пластины заготовку. Для этого вам потребуется немного терпения и умение чертить ровные линии. Положите пластину, распределите её на столько частей, сколько необходимо вершин. Мы будем делать сюрикен «звезду» или хира-сюрикен. Таких вершин необходимо хотя бы три, но может быть и 12, как вам будет угодно. Можно выбрать среднее, расчертить на 6-8 вершин. Посередине будущего сюрикена можно сделать отверстие для лучшей динамики оружия, но можно обойтись и без него.

Если вы решили сделать отверстие в центре сюрикена, воспользуйтесь дрелью, а когда дыра будет готова, подпилите напильником, чтобы сделать ровный круг.

Возьмите дрель, чтобы сделать отверстия по периметру сюрикена. Они необходимы для того, чтобы было легче работать с заготовкой напильником, проделывая контуры на металлической пластине. Теперь воспользуйтесь ножовкой по металлу, чтобы убрать лишний металл и получить полноценную звезду. Возьмите напильник, им необходимо сделать чёткие контуры сюрикена. Обработайте им лучи звезды от середины и до концов.

Если вам необходимо знать, как сделать 8-конечный сюрикен, чтобы он был полноценным оружием для метания, нужно заточить лучи звезды. Возьмите камень для оттачивания ножей. Также можно воспользоваться «шкуркой», чтобы придать сюрикену больше обтекаемости, убрать небольшие выступы на металле. Затачивать лучи необходимо только на концах с одной или с обеих сторон.

Зоны очага ядерного взрыва

Для определения характера возможных разрушений, объема и условий проведения аварийно-спасательных и других неотложных работ очаг ядерного поражения условно делят на четыре зоны: полных, сильных, средних и слабых разрушений.

Зона полных разрушений характеризуется массовыми безвозвратными потерями среди незащищенного населения (до 100 %), полными разрушениями зданий и сооружений, а также части убежищ гражданской обороны, образованием сплошных завалов в населенных пунктах. Лес полностью уничтожается.

Зона сильных разрушений характеризуется массовыми безвозвратными потерями (до 90 %) среди незащищенного населения, полными разрушениями зданий и сооружений, образованием местных и сплошных завалов в населенных пунктах и лесах, сохранением убежищ и большинства противорадиационных укрытий подвального типа.

Зона средних разрушений характеризуется безвозвратными потерями среди населения (до 20 %), средними разрушениями зданий и сооружений, сплошных пожаров, сохранением коммунально-энергетических сетей, убежищ и большинства противорадиационных укрытий.

Зона слабых разрушений характеризуется слабыми и средними разрушениями зданий и сооружений.

Степень лучевой болезни

Доза излучения, вызывающая заболевание, рад

людей

животных

Легкая (I)

100-200

150-250

Средняя (II)

200-400

250-400

Тяжелая (III)

400-600

400-750

Крайне тяжелая (IV)

Более 600

Более 750

Таблица 2. Зависимость степени лучевой болезни от величины дозы облучения

См. также

Строительство диффузионного завода

С 1945 года, с марта, после поступления из США по каналам НКГБ информации о схеме бомбы, построенной на принципе имплозии (то есть сжатия делящегося материала путем взрыва обычного взрывчатого вещества), были начаты работы над схемой, которая имела значительные преимущества перед пушечной. В апреле 1945 года В. Маханев написал записку Берии. В ней говорилось о том, что в 1947 году предполагается пустить для получения урана-235 диффузионный завод, находящийся при лаборатории № 2. Производительность этого завода должна была составить примерно 25 кг урана в год. Этого должно было быть достаточно для двух бомб. Для американской на самом деле понадобилось 65 кг урана-235.

Новые этапы создания атомной бомбы

В 1942 году, в апреле, М. Первухин, нарком химической промышленности, был ознакомлен по распоряжению Сталина с материалами, касающимися работы над атомной бомбой, проведенной за рубежом. Для оценки изложенных в докладе сведений Первухин предложил создать группу специалистов. В нее вошли, по рекомендации Иоффе, молодые ученые Кикоин, Алиханов и Курчатов.

В 1942 году, 27 ноября, вышло постановление «О добыче урана» ГКО. Оно предусматривало создание особого института, а также начало работ по переработке и добыче сырья, геологоразведке. Все это предполагалось осуществить для того, чтобы как можно скорее произошло испытание первой атомной бомбы в СССР. Год 1943-й был ознаменован тем, что НКЦМ приступил к добыче и переработке урановой руды в Таджикистане, на Табаршском руднике. План составлял 4 т в год урановых солей.

Мобилизованные ранее ученые в это время были отозваны с фронта. В этом же 1943 году, 11 февраля, была организована лаборатория № 2 Академии наук. Ее начальником был назначен Курчатов. Она должна была координировать работы по созданию атомной бомбы.

Советской разведкой в 1944 году был получен справочник, в котором содержались ценные сведения о наличии уран-графитовых реакторов и определении параметров реактора. Однако нужного для загрузки даже небольшого опытного ядерного реактора урана тогда еще не было в нашей стране. В 1944 году, 28 сентября, правительство СССР обязало НКЦМ сдавать урановые соли и уран в государственный фонд. На лабораторию № 2 была возложена задача их хранения.

Испытания и суперкомпьютеры

Электронные вычислительные машины стали использоваться в расчётах по ядерному оружию с самого момента их появления. Первыми расчётами, выполненными на первом электронном компьютере общего назначения ЭНИАК в декабре 1945 года, были расчёты по термоядерному взрыву, осуществленные работниками Лос-Аламосской национальной лаборатории из команды Эдварда Теллера.

Огромный объём вычислений и их сложность с самого начала выдвигали требования по созданию все более мощных и совершенных вычислительных машин, что, в конечном счёте, привело к появлению особого типа вычислительной техники под названием «суперкомпьютеры». Использование суперкомпьютеров для симуляции ядерных и термоядерных реакций, происходящих во время взрыва, позволяло экономить колоссальные средства и время. Например, при использовании суперкомпьютера CDC 6600 для разработки новой боеголовки США потребовалось провести только 23 полевых испытания, а при использовании CDC 7600 — уже только 6. Неудивительно, что США накладывало специальные экспортные ограничения на поставку сверхмощных вычислительных машин не только в страны Варшавского блока, но даже в страны-партнёры по НАТО: известен случай, когда в 1966 году США отказало компании CDC в экспортной лицензии суперкомпьютера CDC 6600 для Французского атомного агентства, чтобы помешать Франции в их атомной программе. Наличие суперкомпьютеров в 60-х годах смягчило позицию США по договору о запрете испытаний в трёх средах, так как существовала уверенность, что у СССР нет столь мощных компьютеров, и соблюдение договора даст США стратегическое преимущество перед СССР. Однако этот расчет не оправдался: СССР в кратчайшие сроки разработал собственные суперкомпьютеры БЭСМ-6, а позже — в кооперации со странами Варшавского блока (ГДР, Венгрией и Польшей) ЭВМ семейства ЕС и «Эльбрус».

Роль суперкомпьютеров увеличилась после подписания Договора о всеобъемлющем запрете на проведение ядерных испытаний. В настоящее время в ведущих лабораториях США, занятых обслуживанием и совершенствованием ядерного арсенала страны, установлены мощнейшие компьютерные системы, которые входят в список TOP500, и на которых проводятся как секретные, так и несекретные расчёты, связанные с ядерными взрывами, атомными реакторами и термоядерным синтезом в рамках программы Advanced Simulation and Computing Program. Ранее, несмотря на свою огромную мощность суперкомпьютеры всё же не позволяли очень точно смоделировать весь процесс взрыва во время испытания от начала до конца. Для упрощения задач расчёты осуществлялись в двух или даже в одном измерении, компьютерные испытания проводились поэтапно с моделированием ключевых событий и подачей результатов предыдущего этапа на следующий, что, естественно, приводило к неточностям, которые могли быть сняты только при проведении реального испытания. С выполнением программы Advanced Simulation and Computing Program и вводом в строй суперкомпьютера ASC Purple в 2005 году, Национальные лаборатории США получили возможность моделировать подрыв ядерного и термоядерного оружия в полном объёме с точностью, достаточной, чтобы судить о текущем состоянии и боеготовности зарядов, находящихся на хранении в арсенале.

Места

Мемориальная доска в Пейсли, вспоминающая людей, участвовавших в испытаниях

Британцы проводили испытания в Тихом океане на островах Малден и Киритимати, известных в то время как остров Рождества (не путать с островом Рождества в Индийском океане) между 1957 и 1958 годами. Это были воздушные взрывы, в основном происходившие над водой или приостановленные несколькими сотнями. метров над землей на воздушном шаре.

В Австралии было три участка. Испытания проводились с 1952 по 1957 год и в основном проводились на поверхности. В период с 1953 по 1963 годы на месторождениях Эму Филд и Маралинга было проведено несколько сотен испытаний меньшего масштаба.

Острова Монте-Белло

На островах были реализованы два отдельных проекта атомных испытаний, первый из которых — операция «Ураган», а второй — операция «Мозаика» . После второго взрыва Mosaic радиоактивное облако, которое должно было быть унесено с места, было отправлено ветром, которого не ожидали британские ученые.

Основные испытания на островах Монте-Белло
имя Свидание Уступать Тип
Операция Hurricane / Mosaic
Ураган 3 октября 1952 г., 11:15 25 тыс. Т В корпусе HMS Plym
Мозаика первая 16 мая 1956 11:15 15 тыс. Т Башня
Мозаика два 19 июня 1956 10:14 60 тыс. Т Башня

Emu Field

Атомные испытания на поле Эму в 1953 году были известны как операция «Тотем» . Испытательный полигон Emu Field был заброшен всего через несколько часов после второго и последнего испытания, Totem 2.

Основные испытания на поле эму
имя Свидание Уступать Тип
Операция Тотем
Тотем один 15 октября 1953 г., 07:00 10 кт Башня
Тотем два 27 октября 1953 г., 07:00 8 кт Башня

Маралинга

Атомные испытания на Маралинге в 1957 году были известны как

Испытательный полигон в Маралинге был основан в 1955 году, недалеко от разъезда вдоль Трансавстралийской железной дороги . Поскольку припасы могли доставляться на объект по железной дороге, это было предпочтительнее, чем Эму Филд. Всего на Маралинге было проведено семь основных испытаний. И федеральное правительство, и австралийские газеты в то время очень поддержали тесты. В 1952 году либеральное правительство приняло закон 1952 года об обороне (особые мероприятия) , который разрешал британскому правительству доступ в отдаленные районы Австралии для проведения испытаний ядерного оружия в атмосфере. Широкая общественность в основном не знала о рисках, связанных с программой тестирования, из-за официальной секретности программы тестирования и удаленных мест расположения тестовых площадок.

Прежде чем начались испытания, маралинга Тьярутья, традиционные владельцы земли из числа аборигенов, были насильно выселены.

Авиабаза в Вумере , расположенная в 570 км, которая использовалась для испытаний ракет, первоначально использовалась как база, с которой отправлялись самолеты для испытаний облаков бомб.

Основные испытания на Маралинге
имя Свидание Уступать Тип
Операция Буффало
Одно дерево 27 сен 1956 17:00 12,9 тыс. Т Башня
Марку 4 октября 1956 г., 16:30 1,4 тыс. Т Нижний этаж
воздушный змей 11 октября 1956 г., 14:27 2,9 тыс. Т Airdrop
Вырваться 22 октября 1956 00:05 10,8 тыс. Т Башня
Операция Antler
Тадже 14 сен 1957 14:35 0,93 тыс. Т Башня
Биак 25 сен 1957 10:00 5,67 тыс. Т Башня
Таранаки 09 октября 1957 г., 16:15 26,6 тыс. Т Воздушный шар

По словам Лиз Тайнан из Университета Джеймса Кука , испытания Маралинги были ярким примером крайней секретности, но к концу 1970-х годов произошли заметные изменения в том, как австралийские СМИ освещали британские ядерные испытания. Эйвон Хадсон , ветеран-атомщик, который участвовал в качестве австралийского военнослужащего на более поздних этапах малых судебных процессов, стал известным информатором . Появились некоторые находчивые журналисты-расследователи, и политический контроль стал более интенсивным. В июне 1993 года журналист New Scientist Ян Андерсон написал статью, озаглавленную «Грязные дела Великобритании в Маралинге», и несколько статей по теме.

Страницы

Общество баварских иллюминатов

Адам Вейсгаупт (нем. Adam Weishaupt) — основатель Ордена иллюминатов.

Основная статья: Общество баварских иллюминатов

Общество или Орден баварских иллюминатов (нем. der Illuminatenorden) — немецкое тайное общество XVIII века, основанное 1 мая 1776 года в Ингольштадте философом и теологом Адамом Вейсгауптом (1748—1830), известным сторонником деизма, намеревавшимся использовать свою организацию для распространения и популяризации этого учения, а также либеральных идей эпохи европейского Просвещения. Сам он называл своё общество орденом совершенствующихся (Perfektibilisten).

Официально целью иллюминатов было объявлено совершенствование и облагораживание человечества путём «строительства нового Иерусалима». Орден претерпел внутренний раскол, прежде чем был запрещён баварскими властями в 1785 году. Вейсгаупт лишился должности и умер в изгнании в Тюрингии.

Является одним из самых известных в истории обществ иллюминатов.

«Кастл Браво». 28 февраля 1954 год

«Кастл Браво» — американское испытание термоядерного взрывного устройства на атолле Бикини. Первое из серии семи испытаний «Операции Кастл». Энерговыделение при взрыве достигло 15 мегатонн, что сделало «Кастл Браво» самым мощным из всех ядерных испытаний США.

Взрыв привел к сильному радиационному заражению окружающей среды, что вызвало озабоченность во всем мире и привело к серьезному пересмотру существовавших взглядов на ядерное оружие. Согласно некоторым американским источникам, это стало самым тяжелым случаем радиоактивного заражения во всей истории американской ядерной деятельности.

Посол Индии рассказал о ходе переговоров о закупке у России МиГ-29 и Су-30

Поражающий фактор

Данный фактор заключается в площади, которая подвергнется удару и будет заражена радиацией. У каждой ядерной ракеты этот фактор различный. Поражающий фактор напрямую зависит от мощности ядерной ракеты, которая характеризуется в тротиловом эквиваленте.
Рис. 1. Взрыв однофазной ядерной бомбы мощностью 23 кт. Полигон в Неваде. 1953 годВ свою очередь, фактор поражения состоит из несколько подпунктов:

  • Ядерная волна
  • Световое излучение
  • Электромагнитный импульс

Ядерная волна

Данная волна представляет собой движение воздушных масс параллельно поверхности земли. Вызвана она огромным выбросом энергии. Ядерная волна — это один из самых страшных подпунктов поражающего фактора. Даже перед ядерной волной самой маленькой ракеты не устоит ни одно здание. Волна взрыва распространяется на огромные расстояния, начиная с нескольких километров и заканчивая несколькими десятками, в исключительных случаях в радиусе 100 километров не остается ничего живого. Все превращается в прах.

Световое излучение

Второй по мощности подпункт поражающего фактора. Он является кратковременным и возникает только в момент соприкосновения боеголовки с землей. После контакта происходит выброс энергии невероятной силы. Он сопровождается яркой вспышкой света, которая сравнивается с яркостью солнца. Казалось бы, ничего страшного в этом нет. Однако свет такой яркости способен сжечь все вокруг себя в радиусе нескольких десятков километров.
Рис. 2. Тополь-М на Тверской улице Москвы во время репетиции парадаЕсли в момент взрыва человек, находившийся в 15 километрах от него, смотрел в ту сторону, то ему гарантированно сожжет сетчатку глаза.Скорость света огромна — почти 300000000 м/с. С такой же скоростью он распространяется и в момент взрыва. Световой поток состоит из таких излучений, как инфракрасное, видимое и даже ультрафиолетовое.

Излучение радиации (проникающая радиация)

Так как ядерная бомба состоит из химических элементов, которые излучают радиацию, в частности это уран и цезий, соответственно — взрыв такого оружия будет вызывать моментальное распространение радиации на огромные территории. Такая радиация представляет собой поток направленных гамма-лучей, а также нейтронов. Длительность проникающей радиации, как правило, составляет 10-15 секунд. Данный тип радиации опасен тем, что он способен проникать в любые помещения и здания. Однако чем прочнее материал, через который она проходит, тем меньше будет ее сила.Так, например, пройдя через сталь толщиной 2,8 см, сила радиации ослабевает примерно в 2 раза.

Рис. 3. PC-24 Ярс

Радиоактивное заражение

После взрыва ядерного оружия образуется светящаяся область с температурой в 1700 градусов по Цельсию в эпицентре. Светится она от переизбытка радиоактивных веществ. Однако после того, как температура упадет, эта область превратится в темное облако, как правило, грибовидной формы. Оно будет двигаться вместе с потоком ветра. В это время на землю, где прошло это облако, будут падать радиоактивные вещества. В свою очередь зона заражения делится на 4 участка:

  1. Зона А. Она располагается дальше всех от эпицентра взрыва. Допустимая доза в ней составляет от 40 до 400 рад. Такая зона называется зоной умеренного заражения.
  2. Зона Б. Статус зоны сильного заражения носит участок, где допустимая радиация находится в промежутке от 400 до 1200 рад.
  3. Зона В. Называется зоной опасного заражения. Допустимые значения радиации на этом участке могут находится от 1200 до 4000 рад.
  4. Зона Г. Считается чрезвычайно опасной. Здесь доза излучения может достигать 7000 рад.

Данный импульс возникает в процессе ионизации при гамма-излучении. Его длительность не превышает пару миллисекунд. Однако этот импульс распространяется со сверхзвуковой скоростью. Поэтому нескольких миллисекунд ему хватит, чтобы в радиусе нескольких десятков километров вывести всю электронику из строя. Именно по этой простой причине вся военная техника оснащена не бензиновыми, а дизельными силовыми агрегатами. Для того, чтобы воспламенилось бензиновое топливо, необходима искра. В двигатель она поступает только в том случае, если повернуть замок зажигания. Но он не сможет выдать необходимое количество электричества, так как электромагнитный импульс вывел его из строя. Дизель же воспламеняется за счет сжатия. Для того чтобы мотор запустился, достаточно просто толкнуть автомобиль.
Рис. 4. Ракета Р-36М Сатана

Esso Atlantic

Ссылки[править | править код]

Иноязычные ресурсы

Ядерное испытание № 6. 17 июня 1967 год

17 июня 1967 года китайцы осуществили первое успешное испытание термоядерной бомбы. Испытание было произведено на полигоне Лобнор, бомба была сброшена с самолета Hong-6 (аналог советского самолёта Ту-16), на парашюте спущена до высоты 2960 м, где был произведён взрыв, мощность которого составляла 3,3 мегатонны.

После завершения этого испытания КНР стала четвёртой в мире термоядерной державой после СССР, США и Англии.

По оценкам американских ученых, в ядерном потенциале Китая на 2009 год насчитывалось около 240 ядерных боеголовок, из них 180 на боевом дежурстве, что делает его четвертым по величине ядерным арсеналом среди пяти основных ядерных держав (США, Россия, Франция, Китай, Великобритания).

Работы, проведенные в Болгарии

Большая группа специалистов, руководил которыми В. Кравченко, начальник 4-го спецотдела НКВД, в 1944 году, в ноябре, выехала для изучения результатов геологоразведки в освобожденную Болгарию. В этом же году, 8 декабря, ГКО постановил передать переработку и добычу урановых руд из НКМЦ 9-му Управлению ГУ ГМП НКВД. В 1945 году, в марте, начальником горно-металлургического отдела 9-го Управления был назначен С. Егоров. Тогда же, в январе, организуется НИИ-9 для изучения месторождений урана, решения задач получения плутония и металлического урана, переработки сырья. Из Болгарии к тому времени поступало в неделю около полутора тонн урановой руды.

Новые американские зенитные самоходные ракетно-пушечные комплексы M-SHORAD в Европе

Как сообщила 23 апреля 2021 года армия США, дислоцированный в Ансбахе (Германия) 5-й дивизион 4-го зенитно-артиллерийского полка (5th Battalion, 4th Air Defense Artillery Regiment — 5-4 ADA), входящий в состав 10-го командования противовоздушной и противоракетной обороны армии США в Европе, стал первой частью, получившей новые американские зенитные самоходные ракетно-пушечные комплексы M-SHORAD (Mobile/Maneuver Short Range Air Defense), выполненные на базе колесного бронетранспортера Stryker A1 (8×8). Данный комплекс будет фактически проходить в 5-4 ADA войсковые испытания.

Комнатные растения, приносящие богатство

Богатство включает в себя не только наличие соответствующих финансовых ресурсов, но и семейное и личное материальное благополучие, общественный статус и уверенность в завтрашнем дне. Однако наличие достаточного для этого количества денег способно облегчить получение всего этого. Комнатные растения, приносящие удачу и богатство — о них рассказано далее более подробно.

Денежные цветы для дома

Широко известно, что это растение способно принести в дом материальный достаток. Однако это не единственные цветы, которые способны привлечь в дом богатство. Далее рассказано о наиболее эффективно привлекающих достаток комнатных растениях — это денежные цветы для дома.

Бугенвиллея

Считается одним из наиболее красивых растений, растущих в доме. По причине требовательности к уходу его редко можно встретить растущим в квартире. Ему необходимы обильное освещение, ежегодная пересадка, регулярный полив и регулярная обрезка.

Важно!  Это растение способно привлечь достаток в семью, обеспечить успех в бизнесе, если будет выращиваться в офисе. В азиатских странах нередки случаи того, что бугенвиллею выращивают в банковских учреждениях

Оно особенно подходит тем, кто родился под знаком Скорпиона

В азиатских странах нередки случаи того, что бугенвиллею выращивают в банковских учреждениях. Оно особенно подходит тем, кто родился под знаком Скорпиона.

Бугенвиллея

Драцена Сандера

Это растение имеет название «Бамбук счастья». Это растение помогает хозяину обрести материальный достаток. Постепенно он заметит, что его материальная обеспеченность растет.

Драцена не боится избытка влаги. Оно способно расти даже находясь в воде. Для того. Чтобы оно хорошо развивалось, нужно обеспечить его плодородной почвой и обильным освещением. Предпочтительно, чтобы оно было рассеянным.

Замиокулькас (долларовое дерево)

Этот цветок дает возможность своему владельцу стать не только богатым, но и статусным, уважаемым человеком. Замиокулькус обеспечивает удачу в делах, связанных с деньгами.

Замиокулькас

Крассула (толстянка, денежное дерево)

Многим известны приметы, имеющие отношение к денежному дереву. Одна из них состоит в том, что растущая в квартире толстянка способствует решению денежных проблем.

Нужно учитывать, что сила денежного растения проявляется только в тех случаях, когда соблюдены следующие условия:

  • Особой силой будет обладать только растение, которое первоначально было получено от успешных и состоятельных людей.
  • Толстянку можно растить только в горшках определенной расцветки (зеленой или красной).
  • До того, как крассулу посадить, на дно горшка нужно поместить монетку, чтобы растение могло нести финансовую удачу.
  • Необходимо обеспечить цветку тщательный уход. Силе денежного дерева будет проявляться только в том случае, если листья у него будут толстыми и крупными.

Этому растению требуется обильное освещение. При этом необходимо оберегать его от прямых лучей в солнечную погоду.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector