Научно-образовательныйпортал iq
Содержание:
- Имитация методом водного погружения
- Невесомость на Земле
- Космос без невесомости
- 1.11. Вес и невесомость window.top.document.title = «1.11. Вес и невесомость»;
- Древнейшие народы Передней Азии
- Какова микрогравитация на вкус?
- Методы имитации для изучения
- Вес и невесомость
- Отсутствие гравитации меняет нейронные связи
- Горные орудия
- Как поливать цветок
- Причины
- №4
- «Мозг в чане»
- Реакция опоры
Имитация методом водного погружения
С другой точки зрения, более физиологичным методом имитации невесомости является водное погружение – иммерсия.
При погружении тела в воду или какую-либо другую жидкость действует сила, направленная вертикально вверх от центра Земли. Феномен потери веса наблюдается при неглубоком, поверхностном погружении тела, как это имеет место в обычной ванне.
Выталкивающая сила воды зависит от ее удельного веса. В соленой воде «архимедова» сила может быть настолько велика, что человек не тонет. Иногда путем подсаливания воды раствором поваренной соли (0,9 г/л NaCl) искусственно добиваются эффекта нулевой плавучести человека. Этот же эффект наблюдается и в некоторых природных озерах с высоким удельным весом воды, когда последний равен или больше удельного веса человеческого тела. Эта лабораторная модель наиболее оперативно имитирует эффекты состояния невесомости и больше всего приближена к уменьшению двигательной активности, так как водная среда создает условия «идеальной опоры» с равномерным распределением опорных точек по поверхности тела.
Модель иммерсии для имитации состояния невесомости применяется во многих странах мира. Используют, как правило, обычную воду термонейтральной температуры +34° С, которая является комфортной для тела человека. Подчеркнем, что при иммерсии в отличие от обычных гигиенических и лечебных ванн водный режим более продолжителен – от нескольких часов до нескольких суток.
Но метод водной иммерсии имеет много недостатков. Может возникать нарушение клеток кожных покровов и инфицирование их, что требует строгого и непрерывного контроля. Кроме того, кожные покровы человека проницаемы для воды, в связи с чем контакт с водой может увеличить объем циркулирующей крови и способствовать перегрузке сердца.
Поэтому уже давно стали применять «сухую» иммерсию. Этот метод с использованием водонепроницаемой эластичной пленки. Он исключает контакт кожи с водой и ее воздействие на динамическое равновесие, позволяет проводить исследования влияния режима сниженной гравитации.
Для реализации этого способа применяются ванны водоизмещением около 1,5 кубических метров воды. Температура воды поддерживается автоматически (электроконтактный термометр связан с системой подогрева). К окантовке ванны крепится водонепроницаемая пленка, которая по своей площади значительно превышает водную поверхность. Обследуемый погружается на пленку, которая под тяжестью его тела провисает в водную среду и, окружая его тело со всех сторон, смыкается спереди.
Метод «сухой» иммерсии выгодно отличается от водной возможностью проводить инструментальный контроль за состоянием человека. Этот метод безопасен для организма и позволяет объективно оценивать состояние человека в каждый необходимый момент времени, что представляет интерес не только для космической медицины, но и как космические изобретения в быту.
Невесомость на Земле
Основная статья: Моделирование невесомости
Траектория маневра для достижения невесомости
Астронавты Проекта Меркури на борту C-131 Samaritan, 1959
Питер Диамандис в состоянии невесомости на борту самолёта компании Zero Gravity
На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по баллистической траектории, то есть такой траектории, по которой летел бы самолёт под воздействием одной лишь силы земного притяжения. Эта траектория при небольших скоростях движения получается параболой (так называемой «параболой Кеплера»), из-за чего её иногда ошибочно называют «параболической». В общем случае траектория представляет собой эллипс или гиперболу.
Такие методы применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен шарик, который обычно натягивает нитку вниз (если самолёт покоится, либо движется равномерно и прямолинейно). Отсутствие натяжения нити, на которой висит шарик, свидетельствует о невесомости. Таким образом, пилот должен управлять самолётом так, чтобы шарик висел в воздухе без натяжения нити. Для достижения этого эффекта самолёт должен иметь постоянное ускорение равное g и направленное вниз. Другими словами, пилоты создают нулевую перегрузку. Длительно такую перегрузку (до 40 секунд) можно создать, если выполнить специальную фигуру пилотажа «провал в воздухе». Пилоты резко начинают набор высоты, выходя на «параболическую» траекторию, которая заканчивается таким же резким сбросом высоты. Внутри фюзеляжа имеется камера, в которой тренируются будущие космонавты, она представляет собой полностью обитую мягким покрытием пассажирскую кабину без кресел, чтобы избежать травм как в моменты невесомости, так и в моменты перегрузок.
Подобное чувство невесомости (частичной) человек испытывает при полётах рейсами гражданской авиации во время посадки. Однако в целях безопасности полёта и из-за большой нагрузки на конструкцию самолёта, любой рейсовый самолёт сбрасывает высоту, совершая несколько протяженных спиральных витков (с высоты полёта в 11 км до высоты захода на посадку порядка 1-2 км). То есть спуск производится в несколько заходов, во время которых пассажир на несколько секунд ощущает, что его немного отрывает от кресла вверх. Это же чувство испытывают и автомобилисты, знакомые с трассами, проходящими по крутым холмам, когда машина начинает съезжать с верхушки вниз.
Утверждения, что самолёт для создания кратковременной невесомости выполняет фигуры высшего пилотажа типа «петли Нестерова» — не более чем миф. Тренировки выполняются в слегка модифицированных серийных пассажирских или грузовых самолётах, для которых фигуры высшего пилотажа и подобные режимы полёта являются закритическими и могут привести к разрушению машины в воздухе или быстрому усталостному износу несущих конструкций.
Состояние невесомости можно ощутить в начальный момент свободного падения тела в атмосфере, когда сопротивление воздуха ещё невелико.
Существует несколько самолётов, способных проводить полёты с достижением состояния невесомости без вылета в космос. Технология используется как для тренировок космическими агентствами, так и для коммерческих полётов частных лиц. Подобные полёты проводят американская авиакомпания Zero Gravity, Роскосмос (на Ил-76 МДК c 1988 года, полёты также доступны для частных лиц), NASA (на Boeing KC-135) , Европейское космическое агентство (на Airbus A-310)
Типичный полёт продолжается около полутора часов. В течение полёта проводятся 10-15 сессий невесомости, для достижения которых самолёт совершает крутое пике. Длительность каждой сессии невесомости около 25 секунд. Более 15000 человек совершили полёты по состоянию на ноябрь 2017 года. Многие известные люди совершили полёты в невесомости на борту самолёта, в их числе: Баз Олдрин, Джон Кармак, Тони Хоук, Ричард Брэнсон. Стивен Хокинг также совершил короткий полёт 26 апреля 2007 года.
Другим способом моделирования невесомости, причём в течение длительного времени, является создание гидроневесомости.
Космос без невесомости
Как ни странно, но это вполне возможно. По крайней мере, большую орбитальную станцию вполне реально сделать, как пример, в форме тора, этакого «бублика». И закрутить бублик вокруг его оси.
Космический «бублик» вращается и создает в отсеках силу тяжести
В этом случае, на всех людей, находящихся в отсеках этого орбитального тороидального космического корабля, будет действовать центробежная сила. Источники этой силы таковы. Это следствие движения космонавтов по кругу. Центробежная сила будет приложена в направлении от оси вращения, то есть она будет прижимать космонавтов к наружной (дальней от оси) стенке бублика. Космонавты испытают действие силы тяжести, пропорциональной их массе. При определенном соотношении радиуса этого орбитального тора и скорости его вращения, можно добиться того, что гравитационные условия для космонавтов будут такие же, как на поверхности Земли. Они почувствуют, будто имеют вес как на родной планете.
Кратко подводя итоги, можно констатировать, что невесомость для пилотируемых полетов в космос, в том числе и полетов военного назначения, действует не только во благо, но и во зло. Но зло это не является неизбежным, существует эффективные способы борьбы с негативными последствиями невесомости.
Автор статьи:
Штольц Константин
Инженер. Кандидат наук.
1.11. Вес и невесомость window.top.document.title = «1.11. Вес и невесомость»;
Силу тяжести с которой тела притягиваются к Земле, нужно отличать от веса тела. Понятие веса широко используется в повседневной жизни.
Весом тела называют силу, с которой тело вследствие его притяжения к Земле действует на опору или подвес. При этом предполагается, что тело неподвижно относительно опоры или подвеса. Пусть тело лежит на неподвижном относительно Земли горизонтальном столе (рис. 1.11.1). Систему отсчета, связанную с Землей, будем считать инерциальной. На тело действуют сила тяжести направленная вертикально вниз, и сила упругости с которой опора действует на тело. Силу называют силой нормального давления или силой реакции опоры. Силы, действующие на тело, уравновешивают друг друга: В соответствии с третьим законом Ньютона тело действует на опору с некоторой силой равной по модулю силе реакции опоры и направленной в противоположную сторону: По определению, сила и называется весом тела. Из приведенных выше соотношений видно, что т. е. вес тела равен силе тяжести Но эти силы приложены к разным телам!
Рисунок 1.11.1.Вес тела и сила тяжести. – сила тяжести, – сила реакции опоры, – сила давления тела на опору (вес тела). |
Если тело неподвижно висит на пружине, то роль силы реакции опоры (подвеса) играет упругая силы пружины. По растяжению пружины можно определить вес тела и равную ему силу притяжения тела Землей. Для определения веса тела можно использовать также рычажные весы, сравнивая вес данного тела с весом гирь на равноплечем рычаге. Приводя в равновесие рычажные весы путем уравнивая веса тела суммарным весом гирь, мы одновременно достигаем равенства массы тела суммарной массе гирь, независимо от значения ускорения свободного падения в данной точке земной поверхности. Например, при подъеме в горы на высоту 1 км показания пружинных весов изменяются на 0,0003 от своего значения на уровне моря. При этом равновесие рычажных весов сохраняется. Поэтому рычажные весы являются прибором для определения массы тела путем сравнения с массой гирь (эталонов).
Рассмотрим теперь случай, когда тело лежит на опоре (или подвешено на пружине) в кабине лифта, движущейся с некоторым ускорением относительно Земли. Система отсчета, связанная с лифтом, не является инерциальной. На тело по-прежнему действуют сила тяжести и сила реакции опоры но теперь эти силы не уравновешивают друг друга. По второму закону Ньютона
Сила действующая на опору со стороны тела, которую и называют весом тела, по третьему закону Ньютона равна Следовательно, вес тела в ускоренно движущемся лифте есть
Пусть вектор ускорения направлен по вертикали (вниз или вверх). Если координатную ось OY направить вертикально вниз, то векторное уравнение для можно переписать в скалярной форме:
В этой формуле величины P, g и a следует рассматривать как проекции векторов , и на ось OY. Так как эта ось направлена вертикально вниз, g = const > 0, а величины P и a могут быть как положительными, так и отрицательными. Пусть, для определенности, вектор ускорения направлен вертикально вниз, тогда a > 0 (рис. 1.11.2).
Рисунок 1.11.2.Вес тела в ускоренно движущемся лифте. Вектор ускорения направлен вертикально вниз. 1) a < g, P < mg; 2) a = g, P = 0 (невесомость); 3) a > g, P < 0 |
Из формулы (*) видно, что если a < g, то вес тела P в ускоренно движущемся лифте меньше силы тяжести. Если a > g, то вес тела изменяет знак. Это означает, что тело прижимается не к полу, а к потолку кабины лифта («отрицательный» вес). Наконец, если a = g, то P = 0. Тело свободно падает на Землю вместе с кабиной. Такое состояние называется невесомостью. Оно возникает, например, в кабине космического корабля при его движении по орбите при выключенными реактивных двигателями.
Если вектор ускорения направлен вертикально вверх (рис. 1.11.3), то a < 0 и, следовательно, вес тела всегда будет превышать по модулю силу тяжести. Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой. Действие перегрузки испытывают космонавты, как при взлете космической ракеты, так и на участке торможения при входе корабля в плотные слои атмосферы. Большие перегрузки испытывают летчики при выполнении фигур высшего пилотажа, особенно на сверхзвуковых самолетах.
Рисунок 1.11.3. Вес тела в ускоренно движущемся лифте. Вектор ускорения направлен вертикально вверх. Вес тела приблизительно в два раза превышает по модулю силу тяжести (двукратная перегрузка) |
Модель. Человек в лифте |
Древнейшие народы Передней Азии
Какова микрогравитация на вкус?
Когда вы впервые окажетесь в состоянии невесомости, вы почувствуете следующее:
— тошнота;
— дезориентация;
— головная боль;
— потеря аппетита;
— запор;
— еще кое-что…
Чем дольше вы будете оставаться в условиях микрогравитации, тем слабее будут ваши мышцы и кости. Эти ощущения будут вызваны различными изменениями в системах вашего организма. Давайте подробно рассмотрим, как тело реагирует на невесомость.
Космическая болезнь
Тошнота и дезориентация, которая на вкус как сосущее чувство в желудке, когда автомобиль «летит» вниз по трассе или вас подхватывает на карусели. Только на борту корабля это чувство будет длиться несколько дней. Это чувство космической болезни, слабость моторики, когда ваш мозг получает противоречивую информацию от вестибулярных органов, расположенных в вашем внутреннем ухе. Ваши глаза видят, куда двигаться вверх и вниз в корабле, но ваша вестибулярная система полагается на силу тяжести, определяя направления, что не работает в невесомости. Поэтому ваши глаза могут говорить мозгу, что вы движетесь сверху вниз, но мозг этого не поймет. Это вызывает дезориентацию и тошноту, что может привести к потере аппетита и рвоте. К счастью, спустя несколько дней мозг адаптируется и начнет реагировать исключительно на визуальные сигналы. Таблетки тоже помогут.
Одутловатое лицо и куриные лапки
В условиях микрогравитации ваше лицо будет одутловатым, а пазухи — перегруженными, что вызовет головную боль и нарушение моторики. На Земле это можно почувствовать, если стоять вверх ногами — кровь приливает к голове.
На Земле гравитация притягивает вашу кровь, в результате чего значительные ее объемы скапливаются в венах ног. Как только вы окажетесь в условиях микрогравитации, кровь сдвинется из ваших ног в грудь и голову. Лицо опухнет, а ноги, наоборот, уменьшатся в размерах.
Когда кровь переходит в грудь, сердце увеличивается в размерах и качает больше крови с каждым ударом. Почки отвечают на этот увеличенный кровоток производством большего количества мочи, будто вы выпили большой стакан воды. Кроме того, увеличение кровотока снижает уровень секреции гипофизом антидиуретического гормона (АДГ), что уменьшает жажду. Вы не будете хотеть пить столько же воды, сколько на Земле. В совокупности эти два фактора помогут вашей груди и голове избавиться от лишней жидкости за несколько дней, а поток жидкости вашего тела нормализуется (для космических условий). По возвращении на Землю, вы будете больше пить и чувствовать усталость, но это пройдет.
Космическая анемия
По мере того, как ваши почки выводят лишнюю жидкость, они также уменьшают секрецию эритропоэтина — гормона, стимулирующего производство красных кровяных тел клетками костного мозга. Снижение производства красных кровяных клеток сопровождается уменьшением объема плазмы, поэтому гематокрит (процент объема крови, занимаемого красными кровяными телами) такой же, как на Земле. По возвращении на Землю, ваш уровень эритропоэтина будет расти, так же как и количество красных кровяных тел.
Слабые мышцы
Когда вы находитесь в условиях микрогравитации, ваше тело принимает позу «зародыша»: вы немного сгибаетесь, ваши руки и ноги также принимают полусогнутое состояние. В таком положении вы не используете многие мышцы, особенно те, которые помогают вам поддерживать осанку (антигравитационные мышцы). По мере пребывания на борту МКС, ваши мышцы меняются. Их масса уменьшается, что приводит к «куриным лапкам». Ваше тело больше не нуждается в мышцах, которые медленно сокращаются, вроде тех, что используются в положении стоя. Нужны быстро сокращающиеся волокна, чтобы быстрее передвигаться по станции. Чем больше вы остаетесь на МКС, тем меньше у вас будет мышечной массы. Потеря мышечной массы ослабляет вас, и это, между прочим, является серьезной проблемой для длительных полетов, особенно после возвращения на Землю.
Остеопсатироз
На Земле ваши кости поддерживают вес вашего тела. Размер и масса костей тщательно сбалансированы. В условиях микрогравитации вашим костям больше не нужно поддерживать ваше тело, поэтому все ваши кости, особенно несущие, в районе бедер, ляжек и нижней части спины, используются меньше, чем на Земле. Размер и масса костей в невесомости уменьшаются примерно на 1% в месяц. В результате по возвращении на Землю они просто могут разрушиться. Неизвестно, каков процент восстанавливаемых костей после возвращения на Землю, но он точно не равен 100. Именно эта проблема вносит ограничения на время пребывания в космосе.
В дополнение к слабым костям, концентрация кальция в крови приводит к болезни почек, которым нужно этот избыточный кальций выводить. Могут образоваться камни в почках.
Методы имитации для изучения
Большинство общепринятых методов имитации невесомости воспроизводит давление крови, функциональные и другие сдвиги, которые возникают в этом состоянии.
Для имитации вестибулярных нарушений, развивающихся в условиях невесомости, используется калориметрическая проба (раздражение внутреннего уха теплой водой) и кресло для исследования вестибулярного аппарата с вращением испытуемого.
При вращении человека на кресле возникает конвекция жидкости в полукружных каналах уха, что обычно вызывает нистагм (непроизвольное колебание глаз) и нередко вестибулярные нарушения.
При проведении теста астронавта в кресле на борту космического корабля «Шаттл» (США) также проявился нистагм. Этот результат не соответствовал научным ожиданиям, так как давно предложенная для объяснения вестибулярных нарушений теория была основана на рецепторах внутреннего уха, что возможно только в условиях гравитации. В отсутствие последнего метод не должен, казалось бы, работать. Авторы эксперимента полагают, что теория для объяснения вестибулярных нарушений должна быть пересмотрена.
Это является еще одним убедительным примером того, как знания, добытые в космических просторах, позволяют по-новому подходить к тайнам, лежащим в «нас самих». Так или иначе, изложенное выше наблюдение заслуживает внимания и подтверждения. Можно лишь предположить, что при вращении кресла может возникать так называемая искусственная гравитация, и тогда все остается на «прежних местах».
Вопрос имитации физиологических эффектов, свойственных состоянию невесомости на Земле, является базисным для космической медицины.
Целесообразность изучения эффектов состояния невесомости в земных условиях продиктована трудностями комплексных исследований в космическом полете, необходимостью тщательного подбора космонавтов и изучения тех изменений, которые могут наблюдаться во время космических полетов.
Вес и невесомость
Совсем другое дело, когда тело ничего не весит. Все процессы в нем протекают иначе. Из-за отсутствия давления отолитов наступает нарушение ориентации в пространстве. Понятие «верх» и «низ» в космосе полностью исчезает. Вредит организму человека также отсутствие физической нагрузки. В таком состоянии мышечная ткань атрофируется, если не предпринимать никаких мер. С её деградацией страдает и костная ткань. При отсутствии нагрузки в кости тела поступает меньше фосфора.
Возникают сложности с питанием и глотанием жидкостей. Все жидкости при этом стремятся принять сферическую форму, что очень затрудняет повседневные вещи. Даже обычный насморк в условиях невесомости может оказаться очень тяжёлым испытанием для организма из-за того, что мокроты не выводятся под действием силы тяжести, а образуют сферические капли.
Для поддержания необходимого тонуса космонавты постоянно тренируются по несколько часов в день. При отходе ко сну привязывают себя специальными ремешками, чтобы не получить травму во время сна.
Для питания космонавтов разработана специальная пища в тюбиках и хлеб, который не крошится.
Прежде, чем длительное время испытывать невесомость, человек должен ощутить её действие на земле, чтобы выяснить, как в дальнейшем будет на него воздействовать отсутствие силы тяжести.
Отсутствие гравитации меняет нейронные связи
Ученые сделали фМРТ головного мозга одиннадцати космонавтам до и после полета, который длился в среднем шесть месяцев. Затем они сравнили данные томографии космонавтов с результатами добровольцев, которые не покидали Землю. Исследователей интересовали изменения в связях между зонами мозга, отвечающими за сенсомоторные функции — движение и восприятие положения тела. Для активизации этих зон использовалась стимуляция подошвы стоп, имитирующая походку.
На Земле восприятие пространства и положения тела регулирует вестибулярный аппарат — система мешочков и полукружных каналов во внутреннем ухе. Но в невесомости он работает со сбоями, так как для его работы необходима сила тяжести. Поэтому космонавты нередко испытывают головокружение и дезориентацию до тех пор, пока их тело не привыкнет к необычным условиям.
Выяснилось, что у космонавтов перестраиваются связи мозга, отвечающие за восприятие и движение. Чтобы компенсировать недостаток информации от органа равновесия, развивается вспомогательная система соматосенсорного контроля: мозг чаще обращается к зрительным и тактильным системам, чем к вестибулярному аппарату. Поэтому усиливаются нейронные пути, координирующие их работу. Так, фМРТ показало увеличение связи островковых долей с другими отделами. Островковые доли отвечают за интеграцию ощущений, поступающих из разных систем.
Что же касается связей мозжечка и вестибулярных ядер с полушариями, — в условиях земного притяжения эти структуры обеспечивают обработку ощущений, поступающих из вестибулярного аппарата. Ученые предполагают, что в космосе мозг тормозит активность этой системы, так как от нее поступает противоречивая информация об окружающем мире.
Это не первая попытка изучить влияние невесомости на мозг с помощью нейровизуализации. Более ранние исследования посвящены рискам для здоровья, с которыми сталкиваются космонавты.
Горные орудия
Как поливать цветок
Не думайте, что белый декабрист, как и большинство его «родственников» кактусов, не нуждается в регулярном поливе. Наоборот, шлюмбергера не переносит пересыхание грунта, но и избыток влаги растению вредит. Поэтому с поливом цветка нужно быть предельно осторожным.
Как правило, увлажнять грунт следует раз в неделю. Если летом стоит жара, то увеличьте орошение, а зимой, наоборот, сократите. Перед процедурой проверьте земляной ком, если он недостаточно подсох, то вместо полива, обрызгайте листву растения. Это принесет цветку, куда большую пользу, чем лишнее увлажнение.
Осенью в период покоя поливы сократите до минимума. В это время желательно держать цветок на «сухом пайке». В ноябре начинайте увеличивать полив, и постепенно приведите его к обычному количеству.
В любое время года для увлажнения используйте исключительно фильтрованную, мягкую воду. Перед использованием отстаивайте ее не менее 2 дней.
Причины
Состояние невесомости имеет место, когда действующие на тело внешние силы являются только массовыми (силы тяготения), либо поле этих массовых сил локально однородно, то есть силы поля сообщают всем частицам тела в каждом его положении одинаковые по модулю и направлению ускорения (что при движении в поле тяготения Земли практически имеет место, если размеры тела малы по сравнению с радиусом Земли), либо начальные скорости всех частиц тела по модулю и направлению одинаковы (тело движется поступательно).
Например, космический аппарат и все находящиеся в нём тела, получив соответствующую начальную скорость, движутся под действием сил тяготения вдоль своих орбит практически с одинаковыми ускорениями (феномен присутствия ускорения после отключения тяги двигателя для тела, находящегося на орбите), как свободные; ни сами тела, ни их частицы взаимных давлений друг на друга не оказывают, то есть находятся в состоянии невесомости. При этом по отношению к кабине аппарата находящееся в нём тело может в любом месте оставаться в покое (свободно «висеть» в пространстве). Хотя силы тяготения при невесомости действуют на все частицы тела, но нет внешних поверхностных сил, которые могли бы вызывать взаимные давления частиц друг на друга.
Таким образом, любое тело, размеры которого малы по сравнению с земным радиусом, совершающее свободное поступательное движение в поле тяготения Земли, будет, при отсутствии других внешних сил, находиться в состоянии невесомости. Аналогичным будет результат для движения в поле тяготения любых других небесных тел.
В реальности для всех тел конечных размеров существует разность гравитационных ускорений, вызванная разницей в расстоянии разных точек тела от Земли. Эта небольшая разность стремится вытянуть тело в радиальном направлении.
№4
Многие полагают, что в невесомости у космонавтов исчезает масса тела, но на самом деле это заблуждение. В космосе и астронавт, и их космические корабли имею массу, и на них также действует гравитация Земли. Отличие лишь в том, что гравитационная сила на орбите ниже, чем гравитационная сила на Земле. Однако астронавты не ощущают своего веса лишь по той причине, что на них ничего не давит. То есть, отсутствует контактная сила, какая возникала, когда человек стоял на земле. Иными словами, астронавты и космические корабли все время падают.
Да, другими словами невесомость – это свободное падение, когда на объект не действуют никакие другие силы, кроме неконтактной силы притяжения.
«Мозг в чане»
Так как же мозг справляется с микрогравитацией? Если коротко, то очень плохо — впрочем, информация об этом ограничена. Мы знаем, что лица космонавтов краснеют и раздуваются в невесомости — это явление ласково называют «эффектом Чарли Брауна». Происходит это по большей части потому, что жидкость, состоящая в основном из крови (клеток и плазмы) и спинномозговой жидкости, смещается к голове, в результате чего лица становятся одутловатыми и округлыми, а ноги — тонкими.
Эти смещения жидкости также связаны с «космической болезнью» (по аналогии с морской), головными болями и тошнотой. Недавно их также связали с помутнением зрения из-за нарастания давления при увеличении кровотока; сам мозг как бы всплывает в верхнюю часть черепа, оказывая на него давление. Несмотря на то, что NASA считает нарушение зрения и смещение мозга главным риском для здоровья любого человека на Марсе, выяснить, что его вызывает, а также как его предотвратить, пока не получилось.
Профессор физиологии и биохимии Дэмиен Бейли из Университета Южного Уэльса считает, что определенные части мозга в итоге получают слишком много крови, потому что в кровотоке накапливается оксид азота — невидимая молекула, которая обычно там плавает. Артерии, снабжающие мозг кровью, расслабляются, поэтому раскрываются сильнее. В результате этого подъема кровотока гематоэнцефалический барьер — «амортизатор» мозга — становится перегружен. Вода медленно накапливается, мозг разбухает, давление увеличивается.
Представьте, будто река выходит из берегов. Самое главное во всем этом, что в отдельные части мозга поступает недостаточно кислорода. Это большая проблема, которая может объяснить и затуманенность зрения, а также и другие эффекты, которые проявляются на способностях космонавтов думать, концентрироваться, рассуждать и двигаться.
Реакция опоры
Определение 3
Силу N→ называют силой нормального давления или силой реакции опоры.
Действующие на тело силы всегда уравновешивают друг друга по формуле Fт→=-F→y=-N→. По третьему закону Ньютона имеем, что тело, подвергающееся воздействию силы P→ на опору, равняется по модулю силе реакции опоры направленной в противоположную сторону, тогда P→=-N→.
Из определения видно, что P→ называют весом тела. По соотношениям P→=Fт→=mg→ он равняется силе тяжести. Причем силы приложены к разным телам.
Рисунок 1.11.1. Вес тела и сила тяжести. mg→ – сила тяжести, N→ – сила реакции опоры, P→– сила давления тела на опору (вес тела). mg→=-N→=P→.
Когда тело находится в неподвижном подвешенном состоянии на пружине, тогда роль силы реакции опоры относят к упругой силе пружины. При ее растяжении определяется вес тела и сила его притяжения Землей. Для этого применяют рычажные весы, сравнивая вес данного тела с весом гирь на равноплечем рычаге. Когда они находятся в равновесии, можно достичь равенства массы тела суммарной массой гирь. Значение ускорения свободного падения от этого не зависит.
Пример 1
Если поднять в гору на 1 км пружинные весы, то их показания изменятся на ,0003 от начального значения. Но состояние равновесия сохраняется. Рычажные весы считают прибором для определения массы тела при помощи сравнения с массой гирь, то есть эталонов.
Если тело располагается на опоре или подвешено на пружине, движущейся с ускорением a→ относительно Земли. Такая система отсчета не считается инерциальной. Тело подвергается воздействию силы тяжести mg→ и силы реакции опоры N→. Отличие массы от веса состоит в том, что они друг друга не уравновешивают в данном случае.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать задание